These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19503403)

  • 1. Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons.
    Tanaka K; Tanaka M; Sugiyama T
    Opt Express; 2006 Jan; 14(2):832-46. PubMed ID: 19503403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of confined and enhanced optical near fields for a long narrow aperture in a pyramidal structure on a thick metallic screen.
    Tanaka K; Tanaka M
    J Opt Soc Am A Opt Image Sci Vis; 2004 Dec; 21(12):2344-52. PubMed ID: 15603070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and numerical computation of diffraction of an optical field by a subwavelength-size aperture in a thick metallic screen by use of a volume integral equation.
    Tanaka K; Tanaka M
    Appl Opt; 2004 Mar; 43(8):1734-46. PubMed ID: 15046178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture.
    Tanaka K; Katayama K; Tanaka M
    Opt Express; 2010 Jan; 18(2):787-98. PubMed ID: 20173901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced subwavelength coupling and nano-focusing with optical fiber-plasmonic hybrid probe.
    Minn K; Howard Lee HW; Zhang Z
    Opt Express; 2019 Dec; 27(26):38098-38108. PubMed ID: 31878581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of femtosecond light pulses through near-field optical aperture probes.
    Pack A; Hietschold M; Wannemacher R
    Ultramicroscopy; 2002 Aug; 92(3-4):251-64. PubMed ID: 12213027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Probe With Circular Nano-Moat for far-Field Free Nanofocusing.
    Zhang M; Wang T
    Nanoscale Res Lett; 2016 Dec; 11(1):421. PubMed ID: 27654281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superfocusing of surface plasmon polaritons by metal-coated dielectric probe of tilted conical shape.
    Thu NT; Tanaka K; Tanaka M; Chien DN
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jun; 30(6):1113-8. PubMed ID: 24323098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio.
    Jiang RH; Chen C; Lin DZ; Chou HC; Chu JY; Yen TJ
    Nano Lett; 2018 Feb; 18(2):881-885. PubMed ID: 29281295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized surface plasmon nanolithography with ultrahigh resolution.
    Wei X; Luo X; Dong X; Du C
    Opt Express; 2007 Oct; 15(21):14177-83. PubMed ID: 19550691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of terahertz surface plasmon waves excited on a gold surface by a focused beam.
    Mueckstein R; Mitrofanov O
    Opt Express; 2011 Feb; 19(4):3212-7. PubMed ID: 21369143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton.
    Tanaka K; Tanaka M
    J Microsc; 2003 Jun; 210(Pt 3):294-300. PubMed ID: 12787102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical field characteristics of nanofocusing by conical metal-coated dielectric probe.
    Tanaka K; Katayama K; Tanaka M
    Opt Express; 2011 Oct; 19(21):21028-37. PubMed ID: 21997111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of a surface plasmon polariton by a localized dielectric surface defect.
    Arias RE; Maradudin AA
    Opt Express; 2013 Apr; 21(8):9734-56. PubMed ID: 23609682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon coupled nano-probe for near field scanning optical microscopy.
    Yin X; Shi P; Yang A; Du L; Yuan X
    Opt Express; 2020 May; 28(10):14831-14838. PubMed ID: 32403517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman Probing the Local Ultrastrong Coupling of Vibrational Plasmon Polaritons on Metallic Gratings.
    Arul R; Menghrajani K; Rider MS; Chikkaraddy R; Barnes WL; Baumberg JJ
    Phys Rev Lett; 2023 Sep; 131(12):126902. PubMed ID: 37802963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-high resolution resonant C-shaped aperture nano-tip.
    Cheng YT; Takashima Y; Yuen Y; Hansen PC; Leen JB; Hesselink L
    Opt Express; 2011 Mar; 19(6):5077-85. PubMed ID: 21445142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances.
    Lin L; Roberts A
    Opt Express; 2011 Jan; 19(3):2626-33. PubMed ID: 21369083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient apertureless scanning probes using patterned plasmonic surfaces.
    Lee Y; Alu A; Zhang JX
    Opt Express; 2011 Dec; 19(27):25990-9. PubMed ID: 22274187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.