These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 19503408)
1. Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques. Lin Y; Rivera D; Chen KP Opt Express; 2006 Jan; 14(2):887-92. PubMed ID: 19503408 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals. Liu H; Yao J; Xu D; Wang P Opt Express; 2007 Jan; 15(2):695-703. PubMed ID: 19532292 [TBL] [Abstract][Full Text] [Related]
3. Photonic band-gap formation by optical-phase-mask lithography. Chan TY; Toader O; John S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046610. PubMed ID: 16711945 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Staude I; Thiel M; Essig S; Wolff C; Busch K; von Freymann G; Wegener M Opt Lett; 2010 Apr; 35(7):1094-6. PubMed ID: 20364228 [TBL] [Abstract][Full Text] [Related]
5. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure. Xu D; Chen KP; Ohlinger K; Lin Y Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952 [TBL] [Abstract][Full Text] [Related]
6. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element. Lin Y; Harb A; Lozano K; Xu D; Chen KP Opt Express; 2009 Sep; 17(19):16625-31. PubMed ID: 19770878 [TBL] [Abstract][Full Text] [Related]
7. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals. Chanda D; Abolghasemi LE; Haque M; Ng ML; Herman PR Opt Express; 2008 Sep; 16(20):15402-14. PubMed ID: 18825176 [TBL] [Abstract][Full Text] [Related]
8. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths. Park SG; Yang SM Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506 [TBL] [Abstract][Full Text] [Related]
9. Holographic design and band gap evolution of photonic crystals formed with five-beam symmetric umbrella configuration. Dong GY; Cai LZ; Yang XL; Shen XX; Meng XF; Xu XF; Wang YR Opt Express; 2006 Sep; 14(18):8096-102. PubMed ID: 19529181 [TBL] [Abstract][Full Text] [Related]
10. Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography. Rumpf RC; Johnson EG J Opt Soc Am A Opt Image Sci Vis; 2004 Sep; 21(9):1703-13. PubMed ID: 15384437 [TBL] [Abstract][Full Text] [Related]
11. Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal. Sutherland R; Tondiglia V; Natarajan L; Chandra S; Tomlin D; Bunning T Opt Express; 2002 Oct; 10(20):1074-82. PubMed ID: 19451965 [TBL] [Abstract][Full Text] [Related]
12. Theoretical study of photonic band gaps in woodpile crystals. Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362 [TBL] [Abstract][Full Text] [Related]
13. Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator. Hurley N; Kamau S; Cui J; Lin Y Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374802 [TBL] [Abstract][Full Text] [Related]
14. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide. Marichy C; Muller N; Froufe-Pérez LS; Scheffold F Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of photonic crystals with tunable surface orientation by holographic lithography. Zhong Y; Wu L; Su H; Wong KS; Wang H Opt Express; 2006 Jul; 14(15):6837-43. PubMed ID: 19516865 [TBL] [Abstract][Full Text] [Related]
16. Method for single-shot fabrication of chiral woodpile photonic structures using phase-controlled interference lithography. Sarkar S; Samanta K; Joseph J Opt Express; 2020 Feb; 28(3):4347-4361. PubMed ID: 32122089 [TBL] [Abstract][Full Text] [Related]
17. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material. Li J; Jia B; Zhou G; Gu M Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482 [TBL] [Abstract][Full Text] [Related]
19. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations. George D; Lutkenhaus J; Lowell D; Moazzezi M; Adewole M; Philipose U; Zhang H; Poole ZL; Chen KP; Lin Y Opt Express; 2014 Sep; 22(19):22421-31. PubMed ID: 25321713 [TBL] [Abstract][Full Text] [Related]
20. Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. Lowell D; Hassan S; Sale O; Adewole M; Hurley N; Philipose U; Chen B; Lin Y Appl Opt; 2018 Aug; 57(22):6598-6604. PubMed ID: 30117901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]