These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19503942)

  • 1. Construction of an energy transfer system in the bio-nanocup space by heteromeric assembly of gp27 and gp5 proteins isolated from bacteriophage T4.
    Koshiyama T; Ueno T; Kanamaru S; Arisaka F; Watanabe Y
    Org Biomol Chem; 2009 Jun; 7(12):2649-54. PubMed ID: 19503942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence energy transfer as a probe for tetraplex formation: the i-motif.
    Mergny JL
    Biochemistry; 1999 Feb; 38(5):1573-81. PubMed ID: 9931024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the cell-puncturing device of bacteriophage T4.
    Kanamaru S; Leiman PG; Kostyuchenko VA; Chipman PR; Mesyanzhinov VV; Arisaka F; Rossmann MG
    Nature; 2002 Jan; 415(6871):553-7. PubMed ID: 11823865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent, through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment.
    Jiao GS; Thoresen LH; Burgess K
    J Am Chem Soc; 2003 Dec; 125(48):14668-9. PubMed ID: 14640617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal lens technique to study the effect of pH on electronic energy transfer in organic dye mixtures.
    Kurian A; George SD; Bindhu CV; Nampoori VP; Vallabhan CP
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):678-82. PubMed ID: 17045520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-directed assembly of supramolecular fluorescent protein energy transfer systems.
    Kukolka F; Schoeps O; Woggon U; Niemeyer CM
    Bioconjug Chem; 2007; 18(3):621-7. PubMed ID: 17378598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistep fluorescence resonance energy transfer in sequential chromophore array constructed on oligo-DNA assemblies.
    Ohya Y; Yabuki K; Hashimoto M; Nakajima A; Ouchi T
    Bioconjug Chem; 2003; 14(6):1057-66. PubMed ID: 14624618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotaxane-type resorcinarene tetramers as histone-sensing fluorescent receptors.
    Hayashida O; Uchiyama M
    Org Biomol Chem; 2008 Sep; 6(17):3166-70. PubMed ID: 18698476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein.
    Ma YZ; Miller RA; Fleming GR; Francis MB
    J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the solution structure of the T4 sliding clamp (gp45).
    Millar D; Trakselis MA; Benkovic SJ
    Biochemistry; 2004 Oct; 43(40):12723-7. PubMed ID: 15461444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifluorophoric molecules as fluorescent beacons for antibody-antigen binding.
    Wei AP; Herron JN
    J Mol Recognit; 2002; 15(5):311-20. PubMed ID: 12447909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porphyrin light-harvesting arrays constructed in the recombinant tobacco mosaic virus scaffold.
    Endo M; Fujitsuka M; Majima T
    Chemistry; 2007; 13(31):8660-6. PubMed ID: 17849494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bionanotube tetrapod assembly by in situ synthesis of a gold nanocluster with (Gp5-His6)3 from bacteriophage T4.
    Ueno T; Koshiyama T; Tsuruga T; Goto T; Kanamaru S; Arisaka F; Watanabe Y
    Angew Chem Int Ed Engl; 2006 Jul; 45(27):4508-12. PubMed ID: 16770820
    [No Abstract]   [Full Text] [Related]  

  • 15. Probing protein conformations by in situ non-covalent fluorescence labeling.
    Strunk JJ; Gregor I; Becker Y; Lamken P; Lata S; Reichel A; Enderlein J; Piehler J
    Bioconjug Chem; 2009 Jan; 20(1):41-6. PubMed ID: 19102695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic principles of fluorescence and energy transfer.
    Morrison LE
    Methods Mol Biol; 2008; 429():3-19. PubMed ID: 18695955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of fluorescence through coassembly of molecules in organic nanostructures.
    Behanna HA; Rajangam K; Stupp SI
    J Am Chem Soc; 2007 Jan; 129(2):321-7. PubMed ID: 17212411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays.
    Barnhill HN; Claudel-Gillet S; Ziessel R; Charbonnière LJ; Wang Q
    J Am Chem Soc; 2007 Jun; 129(25):7799-806. PubMed ID: 17542581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of electrostatic potential around specific locations on the surface of actin by diffusion-enhanced fluorescence resonance energy transfer.
    Yamamoto T; Nakayama S; Kobayashi N; Munekata E; Ando T
    J Mol Biol; 1994 Sep; 241(5):714-31. PubMed ID: 8071995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.
    Iijima I; Hohsaka T
    Chembiochem; 2009 Apr; 10(6):999-1006. PubMed ID: 19301314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.