These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19504076)

  • 41. Cre/loxP-mediated chromosome engineering of the mouse genome.
    Brault V; Besson V; Magnol L; Duchon A; Hérault Y
    Handb Exp Pharmacol; 2007; (178):29-48. PubMed ID: 17203650
    [TBL] [Abstract][Full Text] [Related]  

  • 42. HUH site-specific recombinases for targeted modification of the human genome.
    González-Prieto C; Agúndez L; Linden RM; Llosa M
    Trends Biotechnol; 2013 May; 31(5):305-12. PubMed ID: 23545167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution.
    Tian X; Zhou B
    J Biol Chem; 2021; 296():100509. PubMed ID: 33676891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme.
    Liu K; Yu W; Tang M; Tang J; Liu X; Liu Q; Li Y; He L; Zhang L; Evans SM; Tian X; Lui KO; Zhou B
    Development; 2018 Sep; 145(18):. PubMed ID: 30111655
    [No Abstract]   [Full Text] [Related]  

  • 45. Conditional gene manipulation: Cre-ating a new biological era.
    Zhang J; Zhao J; Jiang WJ; Shan XW; Yang XM; Gao JG
    J Zhejiang Univ Sci B; 2012 Jul; 13(7):511-24. PubMed ID: 22761243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering subtle targeted mutations into the mouse genome.
    Menke DB
    Genesis; 2013 Sep; 51(9):605-18. PubMed ID: 23913666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient Genome Manipulation by Variants of Site-Specific Recombinases R and TD.
    Voziyanova E; Anderson RP; Shah R; Li F; Voziyanov Y
    J Mol Biol; 2016 Feb; 428(5 Pt B):990-1003. PubMed ID: 26555749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pairing of single mutations yields obligate Cre-type site-specific recombinases.
    Hoersten J; Ruiz-Gómez G; Lansing F; Rojo-Romanos T; Schmitt LT; Sonntag J; Pisabarro MT; Buchholz F
    Nucleic Acids Res; 2022 Jan; 50(2):1174-1186. PubMed ID: 34951450
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large-scale mouse mutagenesis.
    Cartwright EJ
    Methods Mol Biol; 2009; 561():275-83. PubMed ID: 19504078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strategies for the use of site-specific recombinases in genome engineering.
    Jones JR; Shelton KD; Magnuson MA
    Methods Mol Med; 2005; 103():245-57. PubMed ID: 15542911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Site-specific recombinases: tools for genome engineering.
    Kilby NJ; Snaith MR; Murray JA
    Trends Genet; 1993 Dec; 9(12):413-21. PubMed ID: 8122308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Textpresso site-specific recombinases: A text-mining server for the recombinase literature including Cre mice and conditional alleles.
    Urbanski WM; Condie BG
    Genesis; 2009 Dec; 47(12):842-6. PubMed ID: 19882667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus.
    Lansing F; Paszkowski-Rogacz M; Schmitt LT; Schneider PM; Rojo Romanos T; Sonntag J; Buchholz F
    Nucleic Acids Res; 2020 Jan; 48(1):472-485. PubMed ID: 31745551
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multistep allelic conversion in mouse pre-implantation embryos by AAV vectors.
    Nickl P; Jenickova I; Elias J; Kasparek P; Barinka C; Kopkanova J; Sedlacek R
    Sci Rep; 2024 Aug; 14(1):20160. PubMed ID: 39215103
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-efficient FLPo deleter mice in C57BL/6J background.
    Wu Y; Wang C; Sun H; LeRoith D; Yakar S
    PLoS One; 2009 Nov; 4(11):e8054. PubMed ID: 19956655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Testing the utility of site-specific recombinases for manipulations of genome of moenomycin producer Streptomyces ghanaensis ATCC14672.
    Lopatniuk M; Ostash B; Makitrynskyy R; Walker S; Luzhetskyy A; Fedorenko V
    J Appl Genet; 2015 Nov; 56(4):547-550. PubMed ID: 25801470
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recombinase technology: applications and possibilities.
    Wang Y; Yau YY; Perkins-Balding D; Thomson JG
    Plant Cell Rep; 2011 Mar; 30(3):267-85. PubMed ID: 20972794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery and characterization of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering.
    Jelicic M; Schmitt LT; Paszkowski-Rogacz M; Walder A; Schubert N; Hoersten J; Sürün D; Buchholz F
    Nucleic Acids Res; 2023 May; 51(10):5285-97. PubMed ID: 37158248
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Progress in gene targeting: using mutant mice to study renal function and disease.
    Kohan DE
    Kidney Int; 2008 Aug; 74(4):427-37. PubMed ID: 18418351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-performance chemical- and light-inducible recombinases in mammalian cells and mice.
    Weinberg BH; Cho JH; Agarwal Y; Pham NTH; Caraballo LD; Walkosz M; Ortega C; Trexler M; Tague N; Law B; Benman WKJ; Letendre J; Beal J; Wong WW
    Nat Commun; 2019 Oct; 10(1):4845. PubMed ID: 31649244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.