These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 19504107)
1. Pitfalls in FMRI. Haller S; Bartsch AJ Eur Radiol; 2009 Nov; 19(11):2689-706. PubMed ID: 19504107 [TBL] [Abstract][Full Text] [Related]
2. Integration of EEG source imaging and fMRI during continuous viewing of natural movies. Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829 [TBL] [Abstract][Full Text] [Related]
3. A kernel machine-based fMRI physiological noise removal method. Song X; Chen NK; Gaur P Magn Reson Imaging; 2014 Feb; 32(2):150-62. PubMed ID: 24321306 [TBL] [Abstract][Full Text] [Related]
4. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. Kundu P; Voon V; Balchandani P; Lombardo MV; Poser BA; Bandettini PA Neuroimage; 2017 Jul; 154():59-80. PubMed ID: 28363836 [TBL] [Abstract][Full Text] [Related]
5. Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time. Hulvershorn J; Bloy L; Gualtieri EE; Leigh JS; Elliott MA Neuroimage; 2005 Jan; 24(1):216-23. PubMed ID: 15588613 [TBL] [Abstract][Full Text] [Related]
6. Combination of BOLD-fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents. Bianciardi M; Di Russo F; Aprile T; Maraviglia B; Hagberg GE Magn Reson Imaging; 2004 Dec; 22(10):1429-40. PubMed ID: 15707792 [TBL] [Abstract][Full Text] [Related]
7. Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T. Ragot DM; Chen JJ Magn Reson Imaging; 2019 Apr; 57():328-336. PubMed ID: 30439514 [TBL] [Abstract][Full Text] [Related]
8. BOLD sensitivity and SNR characteristics of parallel imaging-accelerated single-shot multi-echo EPI for fMRI. Bhavsar S; Zvyagintsev M; Mathiak K Neuroimage; 2014 Jan; 84():65-75. PubMed ID: 23954488 [TBL] [Abstract][Full Text] [Related]
9. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Howseman AM; Bowtell RW Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1179-94. PubMed ID: 10466145 [TBL] [Abstract][Full Text] [Related]
10. Increased BOLD sensitivity in the orbitofrontal cortex using slice-dependent echo times at 3 T. Domsch S; Linke J; Heiler PM; Kroll A; Flor H; Wessa M; Schad LR Magn Reson Imaging; 2013 Feb; 31(2):201-11. PubMed ID: 22925606 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI. Barry RL; Williams JM; Klassen LM; Gallivan JP; Culham JC; Menon RS Magn Reson Imaging; 2010 Feb; 28(2):235-44. PubMed ID: 19695810 [TBL] [Abstract][Full Text] [Related]
13. Enhanced identification of BOLD-like components with multi-echo simultaneous multi-slice (MESMS) fMRI and multi-echo ICA. Olafsson V; Kundu P; Wong EC; Bandettini PA; Liu TT Neuroimage; 2015 May; 112():43-51. PubMed ID: 25743045 [TBL] [Abstract][Full Text] [Related]
14. Minimization of Nyquist ghosting for echo-planar imaging at ultra-high fields based on a "negative readout gradient" strategy. van der Zwaag W; Marques JP; Lei H; Just N; Kober T; Gruetter R J Magn Reson Imaging; 2009 Nov; 30(5):1171-8. PubMed ID: 19856451 [TBL] [Abstract][Full Text] [Related]
15. Gradient-echo and spin-echo blood oxygenation level-dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla. Han S; Son JP; Cho H; Park JY; Kim SG Magn Reson Med; 2019 Feb; 81(2):1237-1246. PubMed ID: 30183108 [TBL] [Abstract][Full Text] [Related]
16. Technical considerations for functional magnetic resonance imaging analysis. Conklin CJ; Faro SH; Mohamed FB Neuroimaging Clin N Am; 2014 Nov; 24(4):695-704. PubMed ID: 25441508 [TBL] [Abstract][Full Text] [Related]
17. High spatial resolution BOLD fMRI using simultaneous multislice excitation with echo-shifting gradient echo at 7 Tesla. Su S; Lu N; Jia L; Long X; Jiang C; Zhang H; Li Y; Sun K; Xue R; Dharmakumar R; Zhang L; Liu X; Xie G Magn Reson Imaging; 2020 Feb; 66():86-92. PubMed ID: 30172939 [TBL] [Abstract][Full Text] [Related]
18. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data. Kim HC; Yoo SS; Lee JH Neuroimage; 2015 Jan; 104():437-51. PubMed ID: 25284302 [TBL] [Abstract][Full Text] [Related]
19. Magnetic susceptibility-induced echo-time shifts: Is there a bias in age-related fMRI studies? Ngo GC; Wong CN; Guo S; Paine T; Kramer AF; Sutton BP J Magn Reson Imaging; 2017 Jan; 45(1):207-214. PubMed ID: 27299727 [TBL] [Abstract][Full Text] [Related]
20. Changes in hemodynamic responses in chronic stroke survivors do not affect fMRI signal detection in a block experimental design. Promjunyakul NO; Schmit BD; Schindler-Ivens S Magn Reson Imaging; 2013 Sep; 31(7):1119-28. PubMed ID: 23642802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]