BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19504139)

  • 1. Plasmid stability and kinetics of continuous production of glucoamylase by recombinant Saccharomyces cerevisiae in an airlift bioreactor.
    Kilonzo PM; Margaritis A; Bergougnou MA
    J Ind Microbiol Biotechnol; 2009 Sep; 36(9):1157-69. PubMed ID: 19504139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmid instability kinetics in continuous culture of a recombinant Saccharomyces cerevisiae in airlift bioreactor.
    Zhang Z; Scharer JM; Moo-Young M
    J Biotechnol; 1997 May; 55(1):31-41. PubMed ID: 9226960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells.
    Kilonzo P; Margaritis A; Bergougnou M
    J Biotechnol; 2009 Aug; 143(1):60-8. PubMed ID: 19539672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of continuous GM-CSF production by recombinant Saccharomyces cerevisiae in an airlift bioreactor.
    Shu CH; Yang ST
    J Biotechnol; 1996 Jul; 48(1-2):107-16. PubMed ID: 8818277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated-batch production of glucoamylase using recombinant Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor.
    Kilonzo PM; Margaritis A; Bergougnou MA
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):773-83. PubMed ID: 20407916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein production using recombinant yeast in an immobilized-cell-film airlift bioreactor.
    Zhang Z; Scharer J; Moo-Young M
    Biotechnol Bioeng; 1997 Jul; 55(2):241-51. PubMed ID: 18636482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic and aerobic continuous cultures of Saccharomyces cerevisiae: comparison of plasmid stability and EXG1 gene expression.
    Lú-Chau TA; Guillán A; Núñez MJ; Roca E; Lema JM
    Bioprocess Biosyst Eng; 2004 Apr; 26(3):159-63. PubMed ID: 14986091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and secretion patterns of cloned glucoamylase in plasmid-harboring and chromosome-integrated recombinant yeasts employing an SUC2 promoter.
    Cha HJ; Chae HJ; Choi SS; Yoo YJ
    Appl Biochem Biotechnol; 2000 May; 87(2):81-93. PubMed ID: 10949689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population dynamics of a continuous fermentation of recombinant Saccharomyces cerevisiae using flow cytometry.
    Lú Chau T; Guillán A; Roca E; Núñez MJ; Lema JM
    Biotechnol Prog; 2001; 17(5):951-7. PubMed ID: 11587589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase.
    Ma YJ; Lin LL; Chien HR; Hsu WH
    Biotechnol Appl Biochem; 2000 Feb; 31(1):55-9. PubMed ID: 10669402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and stability of GM-CSF production by recombinant yeast cells immobilized in a fibrous-bed bioreactor.
    Yang ST; Shu CH
    Biotechnol Prog; 1996; 12(4):449-56. PubMed ID: 8987473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure.
    Gupta JC; Mukherjee KJ
    Biotechnol Bioeng; 2002 Jun; 78(5):475-88. PubMed ID: 12115116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of medium composition and nutrient limitation on loss of the recombinant plasmid pLG669-z and beta-galactosidase expression by Saccharomyces cerevisiae.
    O'Kennedy RD; Patching JW
    J Ind Microbiol Biotechnol; 1997 May; 18(5):319-25. PubMed ID: 9218361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an alpha-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae.
    Shibuya I; Tamura G; Shima H; Ishikawa T; Hara S
    Biosci Biotechnol Biochem; 1992 Jun; 56(6):884-9. PubMed ID: 1368253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and comparison of codon optimised Aspergillus tubingensis amylase variants in Saccharomyces cerevisiae.
    Cripwell RA; Rose SH; van Zyl WH
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28637248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-rate-independent production of recombinant glucoamylase by Fusarium venenatum JeRS 325.
    Wiebe MG; Robson GD; Shuster J; Trinci AP
    Biotechnol Bioeng; 2000 May; 68(3):245-51. PubMed ID: 10745192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple structured model for biomass and extracellular enzyme production with recombinant Saccharomyces cerevisiae YPB-G.
    Birol G; Kirdar B; Onsan ZI
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):111-6. PubMed ID: 12242631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae.
    Steyn AJ; Pretorius IS
    Gene; 1991 Apr; 100():85-93. PubMed ID: 2055483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.