These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19504484)

  • 1. High-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with high-resolution electron transfer dissociation mass spectrometry for the analysis of isobaric phosphopeptides.
    Xuan Y; Creese AJ; Horner JA; Cooper HJ
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):1963-9. PubMed ID: 19504484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAIMS and Phosphoproteomics of Fibroblast Growth Factor Signaling: Enhanced Identification of Multiply Phosphorylated Peptides.
    Zhao H; Cunningham DL; Creese AJ; Heath JK; Cooper HJ
    J Proteome Res; 2015 Dec; 14(12):5077-87. PubMed ID: 26503514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.
    Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P
    J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Workflow for Multiplexed Phosphorylation Analysis of TMT-Labeled Peptides Using High-Field Asymmetric Waveform Ion Mobility Spectrometry.
    Schweppe DK; Rusin SF; Gygi SP; Paulo JA
    J Proteome Res; 2020 Jan; 19(1):554-560. PubMed ID: 31799850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues.
    Shvartsburg AA; Singer D; Smith RD; Hoffmann R
    Anal Chem; 2011 Jul; 83(13):5078-85. PubMed ID: 21667994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Phosphoproteome Analysis Using High-Field Asymmetric Waveform Ion Mobility Spectrometry on a Hybrid Orbitrap Mass Spectrometer.
    Muehlbauer LK; Hebert AS; Westphall MS; Shishkova E; Coon JJ
    Anal Chem; 2020 Dec; 92(24):15959-15967. PubMed ID: 33270415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale analysis of peptide sequence variants: the case for high-field asymmetric waveform ion mobility spectrometry.
    Creese AJ; Smart J; Cooper HJ
    Anal Chem; 2013 May; 85(10):4836-43. PubMed ID: 23646896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the electron capture dissociation mass spectrometry of phosphopeptides with traveling wave ion mobility spectrometry and molecular dynamics simulations.
    Kim D; Pai PJ; Creese AJ; Jones AW; Russell DH; Cooper HJ
    J Am Soc Mass Spectrom; 2015 Jun; 26(6):1004-13. PubMed ID: 25832028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling High-Field Asymmetric Ion Mobility Spectrometry with Capillary Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry Improves Protein Identifications in Bottom-Up Proteomic Analysis of Low Nanogram Samples.
    Johnson KR; Greguš M; Ivanov AR
    J Proteome Res; 2022 Oct; 21(10):2453-2461. PubMed ID: 36112031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of peptide isomers with variant modified sites by high-resolution differential ion mobility spectrometry.
    Shvartsburg AA; Creese AJ; Smith RD; Cooper HJ
    Anal Chem; 2010 Oct; 82(19):8327-34. PubMed ID: 20843012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of Isobaric Mono- and Dimethylated RGG-Repeat Peptides by Differential Ion Mobility-Mass Spectrometry.
    Winter DL; Mastellone J; Kabir KMM; Wilkins MR; Donald WA
    Anal Chem; 2019 Sep; 91(18):11827-11833. PubMed ID: 31429255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry.
    Brown LJ; Smith RW; Toutoungi DE; Reynolds JC; Bristow AW; Ray A; Sage A; Wilson ID; Weston DJ; Boyle B; Creaser CS
    Anal Chem; 2012 May; 84(9):4095-103. PubMed ID: 22455620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry.
    Arthur KL; Turner MA; Reynolds JC; Creaser CS
    Anal Chem; 2017 Mar; 89(6):3452-3459. PubMed ID: 28230966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined hydrophilic interaction liquid chromatography-scanning field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry for untargeted metabolomics.
    Szykuła KM; Meurs J; Turner MA; Creaser CS; Reynolds JC
    Anal Bioanal Chem; 2019 Sep; 411(24):6309-6317. PubMed ID: 31011786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional separation and analysis of alpha-1-acid glycoprotein N-glycopeptides using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and nano-liquid chromatography tandem mass spectrometry.
    Chandler KB; Marrero Roche DE; Sackstein R
    Anal Bioanal Chem; 2023 Jan; 415(3):379-390. PubMed ID: 36401639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.
    Beach DG; Melanson JE; Purves RW
    Anal Bioanal Chem; 2015 Mar; 407(9):2473-84. PubMed ID: 25619987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of the helium requirement in high-field asymmetric waveform ion mobility spectrometry (FAIMS): beneficial effects of decreasing the analyzer gap width on peptide analysis.
    Barnett DA; Ouellette RJ
    Rapid Commun Mass Spectrom; 2011 Jul; 25(14):1959-71. PubMed ID: 21698679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.