These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins. Pérez-Garrido A; Morales Helguera A; Abellán Guillén A; Cordeiro MN; Garrido Escudero A Bioorg Med Chem; 2009 Jan; 17(2):896-904. PubMed ID: 19056282 [TBL] [Abstract][Full Text] [Related]
3. Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies. Merzlikine A; Abramov YA; Kowsz SJ; Thomas VH; Mano T Int J Pharm; 2011 Oct; 418(2):207-16. PubMed ID: 21497190 [TBL] [Abstract][Full Text] [Related]
4. In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. Veselinović AM; Veselinović JB; Toropov AA; Toropova AP; Nikolić GM Int J Pharm; 2015 Nov; 495(1):404-409. PubMed ID: 26320546 [TBL] [Abstract][Full Text] [Related]
5. Aggregation of cyclodextrins as an important factor to determine their complexation behavior. Bikádi Z; Kurdi R; Balogh S; Szemán J; Hazai E Chem Biodivers; 2006 Nov; 3(11):1266-78. PubMed ID: 17193241 [TBL] [Abstract][Full Text] [Related]
6. Chiral recognition of aromatic compounds by beta-cyclodextrin based on bimodal complexation. Cai W; Yu Y; Shao X J Mol Model; 2005 Jun; 11(3):186-93. PubMed ID: 15900481 [TBL] [Abstract][Full Text] [Related]
7. Enhanced solubility and antibacterial activity of lipophilic fluoro-substituted N-benzoyl-2-aminobenzothiazoles by complexation with β-cyclodextrins. Trapani A; De Laurentis N; Armenise D; Carrieri A; Defrenza I; Rosato A; Mandracchia D; Tripodo G; Salomone A; Capriati V; Franchini C; Corbo F Int J Pharm; 2016 Jan; 497(1-2):18-22. PubMed ID: 26611670 [TBL] [Abstract][Full Text] [Related]
8. New QSPR study for the prediction of aqueous solubility of drug-like compounds. Duchowicz PR; Talevi A; Bruno-Blanch LE; Castro EA Bioorg Med Chem; 2008 Sep; 16(17):7944-55. PubMed ID: 18701302 [TBL] [Abstract][Full Text] [Related]
9. Combination of 2D-, 3D-connectivity and quantum chemical descriptors in QSPR. Complexation of alpha- and beta-cyclodextrin with benzene derivatives. Estrada E; Perdomo-López I; Torres-Labandeira JJ J Chem Inf Comput Sci; 2001; 41(6):1561-8. PubMed ID: 11749583 [TBL] [Abstract][Full Text] [Related]
10. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins. Liu B; Li W; Nguyen TA; Zhao J Food Chem; 2012 Sep; 134(2):926-32. PubMed ID: 23107709 [TBL] [Abstract][Full Text] [Related]
11. A topological substructural approach applied to the computational prediction of rodent carcinogenicity. Helguera AM; Cabrera Pérez MA; González MP; Ruiz RM; González Díaz H Bioorg Med Chem; 2005 Apr; 13(7):2477-88. PubMed ID: 15755650 [TBL] [Abstract][Full Text] [Related]
12. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software. Achary PG SAR QSAR Environ Res; 2014; 25(6):507-26. PubMed ID: 24716837 [TBL] [Abstract][Full Text] [Related]
13. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point. Ivanova AA; Ivanov AA; Oliferenko AA; Palyulin VA; Zefirov NS SAR QSAR Environ Res; 2005 Jun; 16(3):231-46. PubMed ID: 15804811 [TBL] [Abstract][Full Text] [Related]
14. Modeling the effect of selected cyclodextrins on nifedipine solubility. Agatonovic-Kustrin S; Morton DW; Worthington MS; Glass BD Curr Drug Discov Technol; 2011 Jun; 8(2):146-54. PubMed ID: 21091429 [TBL] [Abstract][Full Text] [Related]
15. Development of improved empirical models for estimating the binding constant of a beta-cyclodextrin inclusion complex. Chari R; Qureshi F; Moschera J; Tarantino R; Kalonia D Pharm Res; 2009 Jan; 26(1):161-71. PubMed ID: 18843449 [TBL] [Abstract][Full Text] [Related]
16. In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems. Gunturi SB; Narayanan R; Khandelwal A Bioorg Med Chem; 2006 Jun; 14(12):4118-29. PubMed ID: 16504519 [TBL] [Abstract][Full Text] [Related]
17. Prediction of boiling points of organic compounds by QSPR tools. Dai YM; Zhu ZP; Cao Z; Zhang YF; Zeng JL; Li X J Mol Graph Model; 2013 Jul; 44():113-9. PubMed ID: 23792208 [TBL] [Abstract][Full Text] [Related]
18. Dramatic improvement of the solubility of pseudolaric acid B by cyclodextrin complexation: preparation, characterization and validation. Chi L; Liu R; Guo T; Wang M; Liao Z; Wu L; Li H; Wu D; Zhang J Int J Pharm; 2015 Feb; 479(2):349-56. PubMed ID: 25575474 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-property relationship for predicting chlorine demand by organic molecules. Luilo GB; Cabaniss SE Environ Sci Technol; 2010 Apr; 44(7):2503-8. PubMed ID: 20230049 [TBL] [Abstract][Full Text] [Related]
20. Predicting pungency and understanding the pungency mechanism of capsaicinoids using TOPS-MODE approach. Yu S; Jia S; Wang D; Lv Z; Chen Y; Wang N; Yao W; Yuan J SAR QSAR Environ Res; 2020 Jul; 31(7):527-545. PubMed ID: 32573260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]