BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19504879)

  • 41. A novel globular protein electrospun fiber mat with the addition of polysilsesquioxane.
    Soares RM; Patzer VL; Dersch R; Wendorff J; da Silveira NP; Pranke P
    Int J Biol Macromol; 2011 Nov; 49(4):480-6. PubMed ID: 21664927
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan.
    Refate A; Mohamed Y; Mohamed M; Sobhy M; Samhy K; Khaled O; Eidaroos K; Batikh H; El-Kashif E; El-Khatib S; Mehanny S
    Heliyon; 2023 Jun; 9(6):e17051. PubMed ID: 37484420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation.
    Jafari J; Emami SH; Samadikuchaksaraei A; Bahar MA; Gorjipour F
    Biomed Mater Eng; 2011; 21(2):99-112. PubMed ID: 21654066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detailed Process Analysis of Biobased Polybutylene Succinate Microfibers Produced by Laboratory-Scale Melt Electrospinning.
    Ostheller ME; Balakrishnan NK; Groten R; Seide G
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33810218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Novel Profiled Multi-Pin Electrospinning System for Nanofiber Production and Encapsulation of Nanoparticles into Nanofibers.
    Prabu GTV; Dhurai B
    Sci Rep; 2020 Mar; 10(1):4302. PubMed ID: 32152364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrospinning of Hyaluronan Using Polymer Coelectrospinning and Intermediate Solvent.
    Vítková L; Musilová L; Achbergerová E; Minařík A; Smolka P; Wrzecionko E; Mráček A
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31540478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution.
    Husain O; Lau W; Edirisinghe M; Parhizkar M
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():240-50. PubMed ID: 27157749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of electrospinning parameters on the nanofiber diameter and length.
    Beachley V; Wen X
    Mater Sci Eng C Mater Biol Appl; 2009 Apr; 29(3):663-668. PubMed ID: 21461344
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly reproducible thermocontrolled electrospun fiber based organic photovoltaic devices.
    Kim T; Yang SJ; Sung SJ; Kim YS; Chang MS; Jung H; Park CR
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4481-7. PubMed ID: 25650717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Review: Current Status and Emerging Developments on Natural Polymer-Based Electrospun Fibers.
    Han W; Wang L; Li Q; Ma B; He C; Guo X; Nie J; Ma G
    Macromol Rapid Commun; 2022 Nov; 43(21):e2200456. PubMed ID: 35842914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Melt Electrospinning of Nanofibers from Medical-Grade Poly(ε-Caprolactone) with a Modified Nozzle.
    Großhaus C; Bakirci E; Berthel M; Hrynevich A; Kade JC; Hochleitner G; Groll J; Dalton PD
    Small; 2020 Nov; 16(44):e2003471. PubMed ID: 33048431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of electrical conductivity of spinning solution on enhancement of electrospinnability of polyamide 6,6 nanofibers.
    Ryu SY; Kwak SY
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4193-202. PubMed ID: 23862472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of Polydioxanone in Near-Field Electrospinning.
    King WE; Gillespie Y; Gilbert K; Bowlin GL
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31861258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parallel patterning of SiO
    Hu S; Li H; Su Z; Yan Y
    Nanotechnology; 2017 Oct; 28(41):415301. PubMed ID: 28786396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An origami-based technique for simple, effective and inexpensive fabrication of highly aligned far-field electrospun fibers.
    Hosseinian H; Jimenez-Moreno M; Sher M; Rodriguez-Garcia A; Martinez-Chapa SO; Hosseini S
    Sci Rep; 2023 May; 13(1):7083. PubMed ID: 37127746
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications.
    Wang HB; Mullins ME; Cregg JM; Hurtado A; Oudega M; Trombley MT; Gilbert RJ
    J Neural Eng; 2009 Feb; 6(1):016001. PubMed ID: 19104139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers.
    Yang GZ; Li HP; Yang JH; Wan J; Yu DG
    Nanoscale Res Lett; 2017 Dec; 12(1):55. PubMed ID: 28105604
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dye-sensitized solar cells using polymer electrolytes based on poly(vinylidene fluoride-hexafluoro propylene) nanofibers by electrospinning method.
    Park SH; Kim JU; Lee SY; Lee WK; Lee JK; Kim MR
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4889-94. PubMed ID: 19049132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Annealing effect on electrospun polymer fibers and their transformation into polymer microspheres.
    Fan PW; Chen WL; Lee TH; Chen JT
    Macromol Rapid Commun; 2012 Feb; 33(4):343-9. PubMed ID: 22271584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultra-thin carbon nanofibers based on graphitization of near-field electrospun polyacrylonitrile.
    Deng J; Liu C; Madou M
    Nanoscale; 2020 May; 12(19):10521-10531. PubMed ID: 32236213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.