These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19504880)

  • 1. Acetylene hydrogenation over Ni-Cu nanoparticles supported on silica prepared by aqueous hydrazine reduction.
    Boudjahem AG; Chettibi M; Monteverdi S; Bettahar MM
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3546-54. PubMed ID: 19504880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine.
    Wojcieszak R; Monteverdi S; Ghanbaja J; Bettahar MM
    J Colloid Interface Sci; 2008 Jan; 317(1):166-74. PubMed ID: 17927996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of nickel nanoparticles supported on activated carbon prepared by aqueous hydrazine reduction.
    Wojcieszak R; Zieliński M; Monteverdi S; Bettahar MM
    J Colloid Interface Sci; 2006 Jul; 299(1):238-48. PubMed ID: 16563418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst.
    Inoue K; Kawamoto K
    Chemosphere; 2010 Jan; 78(5):599-603. PubMed ID: 20022077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective hydrogenation of acetylene over egg-shell palladium nano-catalyst.
    Zhu QF; Gao J; Chen JF; Wen LX
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5641-7. PubMed ID: 21133085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bi-modified Cu-Based Catalysts for Acetylene Hydrogenation: Leveraging Dispersion and Hydrogen Spillover.
    Zhou S; Zeng A; Lu C; Wang M; Zhou C; Li Q; Dong L; Wang A; Tan L
    Inorg Chem; 2024 Jun; 63(25):11802-11811. PubMed ID: 38861686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Effect of a Boron-Doped Carbon-Nanotube-Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol.
    Ai P; Tan M; Yamane N; Liu G; Fan R; Yang G; Yoneyama Y; Yang R; Tsubaki N
    Chemistry; 2017 Jun; 23(34):8252-8261. PubMed ID: 28421629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reaction mechanism and selectivity of acetylene hydrogenation over Ni-Ga intermetallic compound catalysts: a density functional theory study.
    Rao DM; Zhang ST; Li CM; Chen YD; Pu M; Yan H; Wei M
    Dalton Trans; 2018 Mar; 47(12):4198-4208. PubMed ID: 29479598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Pot 2-Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni-Cu/Al2 O3 Catalysts.
    Obregón I; Gandarias I; Miletić N; Ocio A; Arias PL
    ChemSusChem; 2015 Oct; 8(20):3483-8. PubMed ID: 26350168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of acetylene hydrogenation activity over Ni-Zn bimetallic catalyst by doping with Au.
    Xu J; Huang Y; Yang X; He L; Zhou H; Lin Q; Zhang T; Geng H
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6894-9. PubMed ID: 25924346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on the reaction mechanism and selectivity of acetylene semi-hydrogenation on Ni-Sn intermetallic catalysts.
    Rao DM; Sun T; Yang YS; Yin P; Pu M; Yan H; Wei M
    Phys Chem Chem Phys; 2019 Jan; 21(3):1384-1392. PubMed ID: 30601513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous phase reforming of glycerol over nanosize Cu-Ni catalysts.
    Kim JY; Kim SH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2013 Jan; 13(1):593-7. PubMed ID: 23646780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DFT + U study of acetylene selective hydrogenation over anatase supported PdaAgb (a + b = 4) cluster.
    Meng LD; Wang GC
    Phys Chem Chem Phys; 2014 Sep; 16(33):17541-50. PubMed ID: 25026216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of the Initial Oxidation State of Copper for the Catalytic Hydrogenation of Dimethyl Oxalate to Ethylene Glycol.
    Sun Y; Meng F; Ge Q; Sun J
    ChemistryOpen; 2018 Dec; 7(12):969-976. PubMed ID: 30524922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.
    Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C
    Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Response and Stability of Nickel/Alumina for the Hydrogenation of 5-Hydroxymethylfurfural in Water.
    Perret N; Grigoropoulos A; Zanella M; Manning TD; Claridge JB; Rosseinsky MJ
    ChemSusChem; 2016 Mar; 9(5):521-31. PubMed ID: 26870940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO
    Faroldi B; Paviotti MA; Camino-Manjarrés M; González-Carrazán S; López-Olmos C; Rodríguez-Ramos I
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.