These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19504904)

  • 1. Low-temperature phenomena in highly doped grained diamond.
    Mares JJ; Hubík P; Kristofik J; Nesládek M
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3689-94. PubMed ID: 19504904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructures made from superconducting boron-doped diamond.
    Mandal S; Naud C; Williams OA; Bustarret E; Omnès F; Rodière P; Meunier T; Saminadayar L; Bäuerle C
    Nanotechnology; 2010 May; 21(19):195303. PubMed ID: 20400817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconductivity in planarised nanocrystalline diamond films.
    Klemencic GM; Mandal S; Werrell JM; Giblin SR; Williams OA
    Sci Technol Adv Mater; 2017; 18(1):239-244. PubMed ID: 28458745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting boron doped nanocrystalline diamond on boron nitride ceramics.
    Mandal S; Bland HA; Cuenca JA; Snowball M; Williams OA
    Nanoscale; 2019 May; 11(21):10266-10272. PubMed ID: 31116215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-crystalline boron-doped diamond superconducting quantum interference devices with regrowth-induced step edge structure.
    Kageura T; Hideko M; Tsuyuzaki I; Morishita A; Kawano A; Sasama Y; Yamaguchi T; Takano Y; Tachiki M; Ooi S; Hirata K; Arisawa S; Kawarada H
    Sci Rep; 2019 Oct; 9(1):15214. PubMed ID: 31645621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selected topics related to the transport and superconductivity in boron-doped diamond.
    Mareš J; Hubík P; Krištofik J; Nesládek M
    Sci Technol Adv Mater; 2008 Dec; 9(4):044101. PubMed ID: 27878014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-to-insulator transition and superconductivity in boron-doped diamond.
    Bustarret E; Achatz P; Sacépé B; Chapelier C; Marcenat C; Ortéga L; Klein T
    Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1863):267-79. PubMed ID: 18024360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.
    Heyer S; Janssen W; Turner S; Lu YG; Yeap WS; Verbeeck J; Haenen K; Krueger A
    ACS Nano; 2014 Jun; 8(6):5757-64. PubMed ID: 24738731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and superconductivity of isotope-enriched boron-doped diamond.
    Ekimov EA; Sidorov VA; Zoteev AV; Lebed JB; Thompson JD; Stishov SM
    Sci Technol Adv Mater; 2008 Dec; 9(4):044210. PubMed ID: 27878027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global and local superconductivity in boron-doped granular diamond.
    Zhang G; Turner S; Ekimov EA; Vanacken J; Timmermans M; Samuely T; Sidorov VA; Stishov SM; Lu Y; Deloof B; Goderis B; Van Tendeloo G; Van de Vondel J; Moshchalkov VV
    Adv Mater; 2014 Apr; 26(13):2034-40. PubMed ID: 24343908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconductivity in diamond.
    Ekimov EA; Sidorov VA; Bauer ED; Mel'nik NN; Curro NJ; Thompson JD; Stishov SM
    Nature; 2004 Apr; 428(6982):542-5. PubMed ID: 15057827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local boron environment in B-doped nanocrystalline diamond films.
    Turner S; Lu YG; Janssens SD; Da Pieve F; Lamoen D; Verbeeck J; Haenen K; Wagner P; Van Tendeloo G
    Nanoscale; 2012 Sep; 4(19):5960-4. PubMed ID: 22903371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of a superconducting glass state in granular superconducting diamond.
    Klemencic GM; Fellows JM; Werrell JM; Mandal S; Giblin SR; Smith RA; Williams OA
    Sci Rep; 2019 Mar; 9(1):4578. PubMed ID: 30872614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Boron Doping on the Wear Behavior of the Growth and Nucleation Surfaces of Micro- and Nanocrystalline Diamond Films.
    Buijnsters JG; Tsigkourakos M; Hantschel T; Gomes FO; Nuytten T; Favia P; Bender H; Arstila K; Celis JP; Vandervorst W
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26381-26391. PubMed ID: 27595278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior field emissions from boron-doped nanocrystalline diamond compared to boron-doped microcrystalline diamond.
    Shim EL; Lee MH; Lu MY; Kang CJ; Lee KW; Choi YJ
    J Nanosci Nanotechnol; 2012 Dec; 12(12):8904-7. PubMed ID: 23447936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Temperature Superconductivity in Boron-Doped Q-Carbon.
    Bhaumik A; Sachan R; Narayan J
    ACS Nano; 2017 Jun; 11(6):5351-5357. PubMed ID: 28448115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films.
    Bustarret E; Kacmarcik J; Marcenat C; Gheeraert E; Cytermann C; Marcus J; Klein T
    Phys Rev Lett; 2004 Dec; 93(23):237005. PubMed ID: 15601192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of Granular Structure and the Enhancement of Electron Field Emission Properties of Nanocrystalline and Ultrananocrystalline Diamond Films Due to Plasma Treatment Process.
    Chen WE; Chen C; Yeh CJ; Hu X; Leou KC; Lin IN; Lin CR
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28726-28735. PubMed ID: 30053374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead detection using micro/nanocrystalline boron-doped diamond by square-wave anodic stripping voltammetry.
    Arantes TM; Sardinha A; Baldan MR; Cristovan FH; Ferreira NG
    Talanta; 2014 Oct; 128():132-40. PubMed ID: 25059140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the metallic properties of heavily boron-doped superconducting diamond.
    Yokoya T; Nakamura T; Matsushita T; Muro T; Takano Y; Nagao M; Takenouchi T; Kawarada H; Oguchi T
    Nature; 2005 Dec; 438(7068):647-50. PubMed ID: 16319887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.