These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 19505090)
1. Effect of pressure, particle size, and time on optimizing performance in liquid chromatography. Carr PW; Wang X; Stoll DR Anal Chem; 2009 Jul; 81(13):5342-53. PubMed ID: 19505090 [TBL] [Abstract][Full Text] [Related]
2. Separation Speed and Power in Isocratic Liquid Chromatography: Loss in Performance of Poppe vs Knox-Saleem Optimization. Matula AJ; Carr PW Anal Chem; 2015 Jul; 87(13):6578-83. PubMed ID: 26068088 [TBL] [Abstract][Full Text] [Related]
3. Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography. Groskreutz SR; Weber SG Anal Chem; 2016 Dec; 88(23):11742-11749. PubMed ID: 27790917 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of ultra performance liquid chromatography. Part I. Possibilities and limitations. de Villiers A; Lestremau F; Szucs R; Gélébart S; David F; Sandra P J Chromatogr A; 2006 Sep; 1127(1-2):60-9. PubMed ID: 16797562 [TBL] [Abstract][Full Text] [Related]
5. Facts and myths about columns packed with sub-3 microm and sub-2 microm particles. Fekete S; Ganzler K; Fekete J J Pharm Biomed Anal; 2010 Jan; 51(1):56-64. PubMed ID: 19726154 [TBL] [Abstract][Full Text] [Related]
6. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance. Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874 [TBL] [Abstract][Full Text] [Related]
7. Practical constraints in the kinetic plot representation of chromatographic performance data: theory and application to experimental data. Desmet G; Clicq D; Nguyen DT; Guillarme D; Rudaz S; Veuthey JL; Vervoort N; Torok G; Cabooter D; Gzil P Anal Chem; 2006 Apr; 78(7):2150-62. PubMed ID: 16579593 [TBL] [Abstract][Full Text] [Related]
8. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
9. Rapid determination of parabens in seafood sauces by high-performance liquid chromatography: A practical comparison of core-shell particles and sub-2 μm fully porous particles. Ye J; Cao X; Cheng Z; Qin Y; Lu Y J Sep Sci; 2015 Dec; 38(23):3992-9. PubMed ID: 26383987 [TBL] [Abstract][Full Text] [Related]
10. Ultrahigh-pressure liquid chromatography using a 1-mm id column packed with 1.5-microm porous particles. Anspach JA; Maloney TD; Colón LA J Sep Sci; 2007 May; 30(8):1207-13. PubMed ID: 17595956 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of new shell-type, sub-2 micron fully porous and monolith stationary phases, focusing on mass-transfer resistance. Oláh E; Fekete S; Fekete J; Ganzler K J Chromatogr A; 2010 Jun; 1217(23):3642-53. PubMed ID: 20409553 [TBL] [Abstract][Full Text] [Related]
12. Perspectives on recent advances in the speed of high-performance liquid chromatography. Carr PW; Stoll DR; Wang X Anal Chem; 2011 Mar; 83(6):1890-900. PubMed ID: 21341777 [TBL] [Abstract][Full Text] [Related]
13. Effects of extra-column band spreading, liquid chromatography system operating pressure, and column temperature on the performance of sub-2-microm porous particles. Fountain KJ; Neue UD; Grumbach ES; Diehl DM J Chromatogr A; 2009 Aug; 1216(32):5979-88. PubMed ID: 19560774 [TBL] [Abstract][Full Text] [Related]
14. Kinetic optimisation of the reversed phase liquid chromatographic separation of proanthocyanidins on sub-2 μm and superficially porous phases. Kalili KM; Cabooter D; Desmet G; de Villiers A J Chromatogr A; 2012 May; 1236():63-76. PubMed ID: 22444426 [TBL] [Abstract][Full Text] [Related]
15. Comparison of equations describing band broadening in high-performance liquid chromatography. Kirkup L; Foot M; Mulholland M J Chromatogr A; 2004 Mar; 1030(1-2):25-31. PubMed ID: 15043250 [TBL] [Abstract][Full Text] [Related]
16. Modeling chromatographic dispersion: a comparison of popular equations. Usher KM; Simmons CR; Dorsey JG J Chromatogr A; 2008 Jul; 1200(2):122-8. PubMed ID: 18565532 [TBL] [Abstract][Full Text] [Related]
17. High-speed liquid chromatography by simultaneous optimization of temperature and eluent composition. Thompson JD; Carr PW Anal Chem; 2002 Aug; 74(16):4150-9. PubMed ID: 12199587 [TBL] [Abstract][Full Text] [Related]
18. On the relationship between radial structure heterogeneities and efficiency of chromatographic columns. Gritti F J Chromatogr A; 2018 Jan; 1533():112-126. PubMed ID: 29254865 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of superficially porous particle based zwitterionic chiral ion exchangers against fully porous particle benchmarks for enantioselective ultra-high performance liquid chromatography. Geibel C; Dittrich K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M J Chromatogr A; 2019 Oct; 1603():130-140. PubMed ID: 31235330 [TBL] [Abstract][Full Text] [Related]