BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19505096)

  • 21. N-heterocyclic carbene and phosphine ruthenium indenylidene precatalysts: a comparative study in olefin metathesis.
    Clavier H; Nolan SP
    Chemistry; 2007; 13(28):8029-36. PubMed ID: 17616959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism and activity of ruthenium olefin metathesis catalysts: the role of ligands and substrates from a theoretical perspective.
    Adlhart C; Chen P
    J Am Chem Soc; 2004 Mar; 126(11):3496-510. PubMed ID: 15025477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regarding the mechanism of olefin metathesis with sol-gel-supported Ru-based complexes bearing a bidentate carbene ligand. Spectroscopic evidence for return of the propagating Ru carbene.
    Kingsbury JS; Hoveyda AH
    J Am Chem Soc; 2005 Mar; 127(12):4510-7. PubMed ID: 15783234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.
    Martínez JP; Vummaleti SV; Falivene L; Nolan SP; Cavallo L; Solà M; Poater A
    Chemistry; 2016 May; 22(19):6617-23. PubMed ID: 27059290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation.
    Urakawa A; Jutz F; Laurenczy G; Baiker A
    Chemistry; 2007; 13(14):3886-99. PubMed ID: 17294492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring new synthetic strategies in the development of a chemically activated Ru-based olefin metathesis catalyst.
    Ledoux N; Drozdzak R; Allaert B; Linden A; Van Der Voort P; Verpoort F
    Dalton Trans; 2007 Nov; (44):5201-10. PubMed ID: 17985028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reactivity of N-heterocyclic carbenes and their precursors with [Ru(3)(CO)(12)].
    Bruce MI; Cole ML; Fung RS; Forsyth CM; Hilder M; Junk PC; Konstas K
    Dalton Trans; 2008 Aug; (31):4118-28. PubMed ID: 18688430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bonding analysis of N-heterocyclic carbene tautomers and phosphine ligands in transition-metal complexes: a theoretical study.
    Tonner R; Heydenrych G; Frenking G
    Chem Asian J; 2007 Dec; 2(12):1555-67. PubMed ID: 17939149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive Catalysis in Olefin Metathesis with Ru-based Catalysts with Annulated C
    Pablo Martínez J; Solà M; Poater A
    Chemistry; 2021 Dec; 27(72):18074-18083. PubMed ID: 34523164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A General Decomposition Pathway for Phosphine-Stabilized Metathesis Catalysts: Lewis Donors Accelerate Methylidene Abstraction.
    McClennan WL; Rufh SA; Lummiss JA; Fogg DE
    J Am Chem Soc; 2016 Nov; 138(44):14668-14677. PubMed ID: 27736083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N,N'-dialkyl- and N-alkyl-N-mesityl-substituted N-heterocyclic carbenes as ligands in Grubbs catalysts.
    Ledoux N; Allaert B; Pattyn S; Vander Mierde H; Vercaemst C; Verpoort F
    Chemistry; 2006 Jun; 12(17):4654-61. PubMed ID: 16538690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of electronic modifications on rotational barriers of bis-NHC-complexes as observed by dynamic NMR spectroscopy.
    Kolmer A; Kaltschnee L; Schmidts V; Peeck LH; Plenio H; Thiele CM
    Magn Reson Chem; 2013 Nov; 51(11):695-700. PubMed ID: 24000182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. π-Face donation from the aromatic N-substituent of N-heterocyclic carbene ligands to metal and its role in catalysis.
    Credendino R; Falivene L; Cavallo L
    J Am Chem Soc; 2012 May; 134(19):8127-35. PubMed ID: 22524408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Olefin metathesis catalyst: stabilization effect of backbone substitutions of N-heterocyclic carbene.
    Chung CK; Grubbs RH
    Org Lett; 2008 Jul; 10(13):2693-6. PubMed ID: 18510331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical analysis of bonding in N-heterocyclic carbene-rhodium complexes.
    Srebro M; Michalak A
    Inorg Chem; 2009 Jun; 48(12):5361-9. PubMed ID: 19400577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon complexes as electronically and sterically tunable analogues of carbon monoxide in coordination chemistry.
    Krapp A; Frenking G
    J Am Chem Soc; 2008 Dec; 130(49):16646-58. PubMed ID: 19049460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substituent effects and the mechanism of alkene metathesis catalyzed by ruthenium dichloride catalysts.
    Tsipis AC; Orpen AG; Harvey JN
    Dalton Trans; 2005 Sep; (17):2849-58. PubMed ID: 16094473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shutting down secondary reaction pathways: the essential role of the pyrrolyl ligand in improving silica supported d(0)-ML4 alkene metathesis catalysts from DFT calculations.
    Solans-Monfort X; Copéret C; Eisenstein O
    J Am Chem Soc; 2010 Jun; 132(22):7750-7. PubMed ID: 20481452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes.
    Man ML; Lam KC; Sit WN; Ng SM; Zhou Z; Lin Z; Lau CP
    Chemistry; 2006 Jan; 12(4):1004-15. PubMed ID: 16245376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of NHC ligand conformation and solvent concentration on the ruthenium-catalyzed ring-closing metathesis reaction.
    Gatti M; Vieille-Petit L; Luan X; Mariz R; Drinkel E; Linden A; Dorta R
    J Am Chem Soc; 2009 Jul; 131(27):9498-9. PubMed ID: 19534532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.