These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 19505160)
1. Particle tracking model for colloid transport near planar surfaces covered with spherical asperities. Kemps JA; Bhattacharjee S Langmuir; 2009 Jun; 25(12):6887-97. PubMed ID: 19505160 [TBL] [Abstract][Full Text] [Related]
3. Comment on particle tracking model for colloid transport near planar surfaces covered with spherical asperities. Nelson KE; Ginn TR Langmuir; 2009 Nov; 25(21):12835-6. PubMed ID: 19856997 [No Abstract] [Full Text] [Related]
5. Application of the extended RSA models in studies of particle deposition at partially covered surfaces. Weroński P Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783 [TBL] [Abstract][Full Text] [Related]
6. Coupled Influence of Colloidal and Hydrodynamic Interactions on the RSA Dynamic Blocking Function for Particle Deposition onto Packed Spherical Collectors. Ko CH; Bhattacharjee S; Elimelech M J Colloid Interface Sci; 2000 Sep; 229(2):554-567. PubMed ID: 10985836 [TBL] [Abstract][Full Text] [Related]
7. A Simple Model Incorporating the Effects of Deformation and Asperities into the van der Waals Force for Macroscopic Spherical Solid Particles. Forsyth AJ; Rhodes MJ J Colloid Interface Sci; 2000 Mar; 223(1):133-138. PubMed ID: 10684676 [TBL] [Abstract][Full Text] [Related]
8. Numerical study on the deposition rate of hematite particle on polypropylene walls: role of surface roughness. Henry C; Minier JP; Lefèvre G; Hurisse O Langmuir; 2011 Apr; 27(8):4603-12. PubMed ID: 21405065 [TBL] [Abstract][Full Text] [Related]
12. Hemispheres-in-cell geometry to predict colloid deposition in porous media. Ma H; Pedel J; Fife P; Johnson WP Environ Sci Technol; 2009 Nov; 43(22):8573-9. PubMed ID: 20028054 [TBL] [Abstract][Full Text] [Related]
13. Friction of rodlike particles adsorbed to a planar surface in shear flow. Ekiel-Jezewska ML; Sadlej K; Wajnryb E J Chem Phys; 2008 Jul; 129(4):041104. PubMed ID: 18681626 [TBL] [Abstract][Full Text] [Related]
14. Dielectrophoretic levitation in the presence of shear flow: implications for colloidal fouling of filtration membranes. Molla S; Bhattacharjee S Langmuir; 2007 Oct; 23(21):10618-27. PubMed ID: 17867710 [TBL] [Abstract][Full Text] [Related]
15. Adhesion as an interplay between particle size and surface roughness. Katainen J; Paajanen M; Ahtola E; Pore V; Lahtinen J J Colloid Interface Sci; 2006 Dec; 304(2):524-9. PubMed ID: 17010358 [TBL] [Abstract][Full Text] [Related]
16. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization. Li Z; Zhang D; Li X Environ Sci Technol; 2010 Feb; 44(4):1274-80. PubMed ID: 20088544 [TBL] [Abstract][Full Text] [Related]
17. Hydrodynamic coupling of spherical particles to a planar fluid-fluid interface: theoretical analysis. Bławzdziewicz J; Ekiel-Jezewska ML; Wajnryb E J Chem Phys; 2010 Sep; 133(11):114703. PubMed ID: 20866150 [TBL] [Abstract][Full Text] [Related]
18. Interaction of micrometer-scale particles with nanotextured surfaces in shear flow. Duffadar RD; Davis JM J Colloid Interface Sci; 2007 Apr; 308(1):20-9. PubMed ID: 17254594 [TBL] [Abstract][Full Text] [Related]