BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19505164)

  • 1. Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns.
    Hsiao SC; Shum BJ; Onoe H; Douglas ES; Gartner ZJ; Mathies RA; Bertozzi CR; Francis MB
    Langmuir; 2009 Jun; 25(12):6985-91. PubMed ID: 19505164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular microfabrication: observing intercellular interactions using lithographically-defined DNA capture sequences.
    Onoe H; Hsiao SC; Douglas ES; Gartner ZJ; Bertozzi CR; Francis MB; Mathies RA
    Langmuir; 2012 May; 28(21):8120-6. PubMed ID: 22512362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired primary mouse myotube formation on crosslinked type I collagen films is enhanced by laminin and entactin.
    Grefte S; Adjobo-Hermans MJW; Versteeg EMM; Koopman WJH; Daamen WF
    Acta Biomater; 2016 Jan; 30():265-276. PubMed ID: 26555376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering.
    Zhang Y; Zhang Z; Wang Y; Su Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing Extracellular Vesicles and Particles Derived from Skeletal Muscle Myoblasts and Myotubes and the Effect of Acute Contractile Activity.
    Bydak B; PierdonĂ¡ TM; Seif S; Sidhom K; Obi PO; Labouta HI; Gordon JW; Saleem A
    Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed DNA-Directed Patterning of Antibodies for Applications in Cell Subpopulation Analysis.
    Kozminsky M; Scheideler OJ; Li B; Liu NK; Sohn LL
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46421-46430. PubMed ID: 34546726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stac3 inhibits myoblast differentiation into myotubes.
    Ge X; Zhang Y; Park S; Cong X; Gerrard DE; Jiang H
    PLoS One; 2014; 9(4):e95926. PubMed ID: 24788338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA modification of live cell surface.
    Borisenko GG; Zaitseva MA; Chuvilin AN; Pozmogova GE
    Nucleic Acids Res; 2009 Mar; 37(4):e28. PubMed ID: 19158188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic distribution of an antigen involved in the differentiation of avian myoblasts: II. Possible association of beta1 integrin with myofibril organization.
    Hirayama E; Inoue N; Kamata M; Ama M; Kim J
    Cell Motil Cytoskeleton; 2000 Jan; 45(1):27-41. PubMed ID: 10618164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium.
    Molnar P; Wang W; Natarajan A; Rumsey JW; Hickman JJ
    Biotechnol Prog; 2007; 23(1):265-8. PubMed ID: 17269697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance.
    Vajanthri KY; Sidu RK; Poddar S; Singh AK; Mahto SK
    Cytoskeleton (Hoboken); 2019 Mar; 76(3):269-285. PubMed ID: 31074945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of topological constraints on the alignment and maturation of multinucleated myotubes.
    Song KY; Correia JC; Ruas JL; Teixeira AI
    Biotechnol Bioeng; 2021 Jun; 118(6):2234-2242. PubMed ID: 33629347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myotube formation on micro-patterned glass: intracellular organization and protein distribution in C2C12 skeletal muscle cells.
    Yamamoto DL; Csikasz RI; Li Y; Sharma G; Hjort K; Karlsson R; Bengtsson T
    J Histochem Cytochem; 2008 Oct; 56(10):881-92. PubMed ID: 18574252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix.
    Jiao A; Moerk CT; Penland N; Perla M; Kim J; Smith AST; Murry CE; Kim DH
    J Biomed Mater Res A; 2018 Jun; 106(6):1543-1551. PubMed ID: 29368451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen nanofibre anisotropy induces myotube differentiation and acetylcholine receptor clustering.
    Kung FH; Sillitti D; Shrirao AB; Shreiber DI; Firestein BL
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2010-e2019. PubMed ID: 29266875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term culture of cells patterned on glass via membrane-tethered oligonucleotides.
    Sakurai K; Hoffecker IT; Iwata H
    Biomaterials; 2013 Jan; 34(2):361-70. PubMed ID: 23092858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis.
    Shimizu K; Fujita H; Nagamori E
    J Biosci Bioeng; 2010 Feb; 109(2):174-8. PubMed ID: 20129103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of skeletal muscle constructs by topographic activation of cell alignment.
    Zhao Y; Zeng H; Nam J; Agarwal S
    Biotechnol Bioeng; 2009 Feb; 102(2):624-31. PubMed ID: 18958861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.