BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19505164)

  • 21. Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds.
    McClure MJ; Clark NM; Hyzy SL; Chalfant CE; Olivares-Navarrete R; Boyan BD; Schwartz Z
    Acta Biomater; 2016 Jul; 39():44-54. PubMed ID: 27142254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preferential adhesion to and survival on patterned laminin organizes myogenesis in vitro.
    Clark P; Coles D; Peckham M
    Exp Cell Res; 1997 Feb; 230(2):275-83. PubMed ID: 9024786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accumulation of mitochondrial DNA deletions in myotubes cultured from muscles of patients with mitochondrial myopathies.
    Collombet JM; Mandon G; Dumoulin R; Mousson B; Stepien G
    Mol Gen Genet; 1996 Nov; 253(1-2):182-8. PubMed ID: 9003302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates.
    Gingras J; Rioux RM; Cuvelier D; Geisse NA; Lichtman JW; Whitesides GM; Mahadevan L; Sanes JR
    Biophys J; 2009 Nov; 97(10):2771-9. PubMed ID: 19917231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media.
    Palamà IE; D'Amone S; Coluccia AM; Gigli G
    Biotechnol Bioeng; 2013 Feb; 110(2):586-96. PubMed ID: 22886558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.
    Goh Q; Dearth CL; Corbett JT; Pierre P; Chadee DN; Pizza FX
    Exp Cell Res; 2015 Feb; 331(2):292-308. PubMed ID: 25281303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanopattern surface improves cultured human myotube maturation.
    Brunetti J; Koenig S; Monnier A; Frieden M
    Skelet Muscle; 2021 May; 11(1):12. PubMed ID: 33952323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival.
    Vachon PH; Loechel F; Xu H; Wewer UM; Engvall E
    J Cell Biol; 1996 Sep; 134(6):1483-97. PubMed ID: 8830776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of the extracellular fatty acid binding protein (Ex-FABP) during muscle fiber formation in vivo and in vitro.
    Gentili C; Cermelli S; Tacchetti C; Cossu G; Cancedda R; Descalzi Cancedda F
    Exp Cell Res; 1998 Aug; 242(2):410-8. PubMed ID: 9683528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of cell-extracellular matrix interaction on myogenic characteristics and artificial skeletal muscle tissue.
    Ding R; Horie M; Nagasaka S; Ohsumi S; Shimizu K; Honda H; Nagamori E; Fujita H; Kawamoto T
    J Biosci Bioeng; 2020 Jul; 130(1):98-105. PubMed ID: 32278672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment.
    Carnes ME; Pins GD
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2308-2319. PubMed ID: 31967415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of arachidonic acid and its major prostaglandin derivatives on bovine myoblast proliferation, differentiation, and fusion.
    Leng X; Jiang H
    Domest Anim Endocrinol; 2019 Apr; 67():28-36. PubMed ID: 30677541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation.
    Hicks MR; Cao TV; Campbell DH; Standley PR
    J Appl Physiol (1985); 2012 Aug; 113(3):465-72. PubMed ID: 22678963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dose-response effects of arachidonic acid on primary human skeletal myoblasts and myotubes.
    Roberts BM; Kolb AL; Geddis AV; Naimo MA; Matheny RW
    J Int Soc Sports Nutr; 2023; 20(1):2164209. PubMed ID: 36620755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes.
    Takayama Y; Wagatsuma A; Hoshino T; Mabuchi K
    Biotechnol Prog; 2015; 31(1):220-5. PubMed ID: 25311428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Electrochemical Bioconjugation on Metal Surfaces.
    Furst AL; Smith MJ; Francis MB
    J Am Chem Soc; 2017 Sep; 139(36):12610-12616. PubMed ID: 28858482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures.
    Tanaka H; Furuya T; Kameda N; Kobayashi T; Mizusawa H
    J Muscle Res Cell Motil; 2000; 21(6):507-26. PubMed ID: 11206130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction.
    Dugdale HF; Hughes DC; Allan R; Deane CS; Coxon CR; Morton JP; Stewart CE; Sharples AP
    Mol Cell Biochem; 2018 Jul; 444(1-2):109-123. PubMed ID: 29189984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autonomous xenogenic cell fusion of murine and chick skeletal muscle myoblasts.
    Takaya T; Nihashi Y; Kojima S; Ono T; Kagami H
    Anim Sci J; 2017 Nov; 88(11):1880-1885. PubMed ID: 28782148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HEMA 3 Staining: A Simple Alternative for the Assessment of Myoblast Differentiation.
    Levitt DE; Adler KA; Simon L
    Curr Protoc Stem Cell Biol; 2019 Dec; 51(1):e101. PubMed ID: 31756292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.