BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

835 related articles for article (PubMed ID: 19505597)

  • 1. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering.
    Wang X; Li Y; Hodgson PD; Wen C
    Tissue Eng Part A; 2010 Jan; 16(1):309-16. PubMed ID: 19705960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C
    Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication and bioactivation of Ti-based alloy scaffold macroscopically identical to cancellous bone from polymeric template with TiNbZr powders.
    Rao X; Yang J; Li J; Feng X; Chen Z; Yuan Y; Yong B; Chu C; Tan X; Song Q
    J Mech Behav Biomed Mater; 2018 Dec; 88():296-304. PubMed ID: 30196185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering.
    Wang H; Li J; Yang H; Liu C; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
    Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ
    Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications.
    Cheng X; Liu S; Chen C; Chen W; Liu M; Li R; Zhang X; Zhou K
    J Mater Sci Mater Med; 2019 Aug; 30(8):91. PubMed ID: 31388766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
    He G; Liu P; Tan Q
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications.
    Aslan N; Aksakal B; Findik F
    J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.