These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
835 related articles for article (PubMed ID: 19505597)
1. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Wang X; Li Y; Hodgson PD; Wen C Tissue Eng Part A; 2010 Jan; 16(1):309-16. PubMed ID: 19705960 [TBL] [Abstract][Full Text] [Related]
3. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
4. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
5. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Xiong J; Li Y; Wang X; Hodgson P; Wen C Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702 [TBL] [Abstract][Full Text] [Related]
7. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210 [TBL] [Abstract][Full Text] [Related]
8. Replication and bioactivation of Ti-based alloy scaffold macroscopically identical to cancellous bone from polymeric template with TiNbZr powders. Rao X; Yang J; Li J; Feng X; Chen Z; Yuan Y; Yong B; Chu C; Tan X; Song Q J Mech Behav Biomed Mater; 2018 Dec; 88():296-304. PubMed ID: 30196185 [TBL] [Abstract][Full Text] [Related]
9. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering. Wang H; Li J; Yang H; Liu C; Ruan J Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467 [TBL] [Abstract][Full Text] [Related]
10. Titanium-nickel shape memory alloy foams for bone tissue engineering. Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791 [TBL] [Abstract][Full Text] [Related]
11. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847 [TBL] [Abstract][Full Text] [Related]
12. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
13. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
14. Mechanical biocompatibilities of titanium alloys for biomedical applications. Niinomi M J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769 [TBL] [Abstract][Full Text] [Related]
15. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications. Cheng X; Liu S; Chen C; Chen W; Liu M; Li R; Zhang X; Zhou K J Mater Sci Mater Med; 2019 Aug; 30(8):91. PubMed ID: 31388766 [TBL] [Abstract][Full Text] [Related]
16. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. Rao X; Chu CL; Zheng YY J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322 [TBL] [Abstract][Full Text] [Related]
17. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
18. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. He G; Liu P; Tan Q J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076 [TBL] [Abstract][Full Text] [Related]
19. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Ning C; Ding D; Dai K; Zhai W; Chen L Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications. Aslan N; Aksakal B; Findik F J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]