These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

836 related articles for article (PubMed ID: 19505597)

  • 21. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocomposite hydroxyapatite formation on a Ti-13Nb-13Zr alloy exposed in a MEM cell culture medium and the effect of H2O2 addition.
    Baker MA; Assis SL; Higa OZ; Costa I
    Acta Biomater; 2009 Jan; 5(1):63-75. PubMed ID: 18815081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy.
    Yu S; Yu Z; Wang G; Han J; Ma X; Dargusch MS
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):103-15. PubMed ID: 21439798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical properties and in vitro biocompatibility of porous zein scaffolds.
    Gong S; Wang H; Sun Q; Xue ST; Wang JY
    Biomaterials; 2006 Jul; 27(20):3793-9. PubMed ID: 16527348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.
    Nouri A; Hodgson PD; Wen CE
    Acta Biomater; 2010 Apr; 6(4):1630-9. PubMed ID: 19815096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds.
    Seyedraoufi ZS; Mirdamadi Sh
    J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo biocompatibility and mechanical properties of porous zein scaffolds.
    Wang HJ; Gong SJ; Lin ZX; Fu JX; Xue ST; Huang JC; Wang JY
    Biomaterials; 2007 Sep; 28(27):3952-64. PubMed ID: 17582490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition.
    Li Q; Niinomi M; Hieda J; Nakai M; Cho K
    Acta Biomater; 2013 Aug; 9(8):8027-35. PubMed ID: 23624220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.
    He G; Liu P; Tan Q; Jiang G
    J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.
    Hao YL; Li SJ; Sun SY; Zheng CY; Yang R
    Acta Biomater; 2007 Mar; 3(2):277-86. PubMed ID: 17234466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.
    do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR
    PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functionally graded porous scaffolds made of Ti-based agglomerates.
    Nazari KA; Hilditch T; Dargusch MS; Nouri A
    J Mech Behav Biomed Mater; 2016 Oct; 63():157-163. PubMed ID: 27389321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application.
    Li SJ; Niinomi M; Akahori T; Kasuga T; Yang R; Hao YL
    Biomaterials; 2004 Aug; 25(17):3369-78. PubMed ID: 15020109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys.
    Delvat E; Gordin DM; Gloriant T; Duval JL; Nagel MD
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):345-51. PubMed ID: 19627799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.
    Landi E; Valentini F; Tampieri A
    Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.