BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19505684)

  • 1. A boundary element model for investigating the effects of eye tumor on the temperature distribution inside the human eye.
    Ooi EH; Ang WT; Ng EY
    Comput Biol Med; 2009 Aug; 39(8):667-77. PubMed ID: 19505684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A boundary element model of the human eye undergoing laser thermokeratoplasty.
    Ooi EH; Ang WT; Ng EY
    Comput Biol Med; 2008 Jun; 38(6):727-37. PubMed ID: 18501886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocular surface temperature: a 3D FEM prediction using bioheat equation.
    Ng EY; Ooi EH
    Comput Biol Med; 2007 Jun; 37(6):829-35. PubMed ID: 17034781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of thermal effects of 3 types of laser in eye: 3D simulation with bioheat equation.
    Joukar A; Nammakie E; Niroomand-Oscuii H
    J Therm Biol; 2015; 49-50():74-81. PubMed ID: 25774029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of aqueous humor hydrodynamics in human eye heat transfer.
    Ooi EH; Ng EY
    Comput Biol Med; 2008 Feb; 38(2):252-62. PubMed ID: 18022147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels.
    Flyckt VM; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2006 Oct; 51(19):5007-21. PubMed ID: 16985284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Phys Med Biol; 2010 Aug; 55(16):4647-59. PubMed ID: 20671356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element model for phase change heat transfer in a composite tissue with blood perfusion.
    Hayes LJ; Diller KR
    ISA Trans; 1983; 22(4):33-7. PubMed ID: 6662667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FEM simulation of the eye structure with bio-heat analysis.
    Ng EY; Ooi EH
    Comput Methods Programs Biomed; 2006 Jun; 82(3):268-76. PubMed ID: 16682096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse techniques in hyperthermia: a sensitivity study.
    Clegg ST; Samulski TV; Murphy KA; Rosner GL; Dewhirst MW
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):373-82. PubMed ID: 8063303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation.
    Zhou J; Chen JK; Zhang Y
    Comput Biol Med; 2009 Mar; 39(3):286-93. PubMed ID: 19217088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.
    Rafiq A; Khanday MA
    J Therm Biol; 2016 Dec; 62(Pt B):138-142. PubMed ID: 27888927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz.
    Flyckt VM; Raaymakers BW; Kroeze H; Lagendijk JJ
    Phys Med Biol; 2007 May; 52(10):2691-701. PubMed ID: 17473345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT).
    Ozen S; Helhel S; Cerezci O
    Burns; 2008 Feb; 34(1):45-9. PubMed ID: 17624675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface.
    Shih TC; Yuan P; Lin WL; Kou HS
    Med Eng Phys; 2007 Nov; 29(9):946-53. PubMed ID: 17137825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics.
    Deng ZS; Liu J
    Comput Biol Med; 2004 Sep; 34(6):495-521. PubMed ID: 15265721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles.
    Zhang C; Johnson DT; Brazel CS
    IEEE Trans Nanobioscience; 2008 Dec; 7(4):267-75. PubMed ID: 19203870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz.
    Wainwright PR
    Phys Med Biol; 2007 Jun; 52(12):3335-50. PubMed ID: 17664547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual reciprocity boundary element method for solving thermal wave model of bioheat transfer.
    Liu J; Lu W
    Space Med Med Eng (Beijing); 1997 Dec; 10(6):391-5. PubMed ID: 11540432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary element method with bioheat equation for skin burn injury.
    Ng EY; Tan HM; Ooi EH
    Burns; 2009 Nov; 35(7):987-97. PubMed ID: 19427127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.