BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19505750)

  • 21. Varus alignment leads to increased forces in the anterior cruciate ligament.
    van de Pol GJ; Arnold MP; Verdonschot N; van Kampen A
    Am J Sports Med; 2009 Mar; 37(3):481-7. PubMed ID: 19088054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of kinematics in the healthy and ACL injured knee using MRI.
    Scarvell JM; Smith PN; Refshauge KM; Galloway H; Woods K
    J Biomech; 2005 Feb; 38(2):255-62. PubMed ID: 15598451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tibiofemoral contact pressures in degenerative joint disease.
    Riegger-Krugh C; Gerhart TN; Powers WR; Hayes WC
    Clin Orthop Relat Res; 1998 Mar; (348):233-45. PubMed ID: 9553558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The reproducibility and repeatability of varus stress radiographs in the assessment of isolated fibular collateral ligament and grade-III posterolateral knee injuries. An in vitro biomechanical study.
    LaPrade RF; Heikes C; Bakker AJ; Jakobsen RB
    J Bone Joint Surg Am; 2008 Oct; 90(10):2069-76. PubMed ID: 18829903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of counteracting external valgus moment on lateral tibial cartilage contact conditions and tibial rotation.
    Shriram D; Parween R; Lee YHD; Subburaj K
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1625-1628. PubMed ID: 29060194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biomechanical effect of increased valgus on total knee arthroplasty: a cadaveric study.
    Bryant BJ; Tilan JU; McGarry MH; Takenaka N; Kim WC; Lee TQ
    J Arthroplasty; 2014 Apr; 29(4):722-6. PubMed ID: 24120050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of a hydrogel implant in the repair of osteochondral defects of the knee: A biomechanical evaluation of restoration of native contact pressures in cadaver knees.
    Sismondo RA; Werner FW; Ordway NR; Osaheni AO; Blum MM; Scuderi MG
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():15-19. PubMed ID: 31054437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repeated application of incremental landing impact loads to intact knee joints induces anterior cruciate ligament failure and tibiofemoral cartilage deformation and damage: A preliminary cadaveric investigation.
    Yeow CH; Ng KS; Cheong CH; Lee PV; Goh JC
    J Biomech; 2009 May; 42(8):972-81. PubMed ID: 19380143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament.
    Markolf KL; Kochan A; Amstutz HC
    J Bone Joint Surg Am; 1984 Feb; 66(2):242-52. PubMed ID: 6693451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal.
    Markolf KL; Jackson SR; McAllister DR
    Am J Sports Med; 2012 Feb; 40(2):332-8. PubMed ID: 22085731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions.
    Li G; Moses JM; Papannagari R; Pathare NP; DeFrate LE; Gill TJ
    J Bone Joint Surg Am; 2006 Aug; 88(8):1826-34. PubMed ID: 16882908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High tibial osteotomy for unloading osteochondral defects in the medial compartment of the knee.
    Mina C; Garrett WE; Pietrobon R; Glisson R; Higgins L
    Am J Sports Med; 2008 May; 36(5):949-55. PubMed ID: 18413679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of valgus stress radiographs with medial knee ligament injuries: an in vitro biomechanical study.
    Laprade RF; Bernhardson AS; Griffith CJ; Macalena JA; Wijdicks CA
    Am J Sports Med; 2010 Feb; 38(2):330-8. PubMed ID: 19966093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance imaging study of alteration of tibiofemoral joint articulation after posterior cruciate ligament injury.
    Chandrasekaran S; Scarvell JM; Buirski G; Woods KR; Smith PN
    Knee; 2012 Jan; 19(1):60-4. PubMed ID: 21232963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait.
    Shelburne KB; Torry MR; Steadman JR; Pandy MG
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):814-21. PubMed ID: 18362043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligament injuries associated with tibial plateau fractures.
    Delamarter RB; Hohl M; Hopp E
    Clin Orthop Relat Res; 1990 Jan; (250):226-33. PubMed ID: 2293934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006.
    Zantop T; Schumacher T; Diermann N; Schanz S; Raschke MJ; Petersen W
    Arch Orthop Trauma Surg; 2007 Nov; 127(9):743-52. PubMed ID: 17072626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the varus-valgus instability on the contact of the femoro-tibial joint.
    Inaba HI; Arai MA; Watanabe WW
    Proc Inst Mech Eng H; 1990; 204(1):61-4. PubMed ID: 2353994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contact pressures in the patellofemoral joint during impact loading on the human flexed knee.
    Haut RC
    J Orthop Res; 1989; 7(2):272-80. PubMed ID: 2918426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pressure distribution at the knee joint. Influence of varus and valgus deviation without and with ligament dissection.
    Bruns J; Volkmer M; Luessenhop S
    Arch Orthop Trauma Surg; 1993; 113(1):12-9. PubMed ID: 8117504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.