These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 1950592)

  • 1. Correlations between the actual redox-state potential (E0') of biophase and heart activity in vivo.
    Puppi A; Dely M
    Acta Physiol Hung; 1991; 77(1):43-56. PubMed ID: 1950592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between redox-state potential changes in different tissues and the heart frequency in vivo.
    Szabó IT; Puppi A; Gábriel M; Dely M
    Gen Physiol Biophys; 1986 Aug; 5(4):433-43. PubMed ID: 3770462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the redox-state potential of biophase on electrically stimulated skeletal muscles (myographic and voltage-clamp analysis).
    Puppi A; Nánási P; Dely M
    Acta Physiol Hung; 1991; 77(1):33-41. PubMed ID: 1950591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox agents modulate a(K+)0 changes evoked by acetylcholine and adrenaline in frog heart.
    Puppi A; Wittmann I; Dely M
    Acta Physiol Hung; 1990; 76(1):61-9. PubMed ID: 2088012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the influence of aeroions on ECG and correlation between this action and tissue redox-state potential.
    Puppi A; Dely M
    Acta Physiol Hung; 1991; 77(2):139-46. PubMed ID: 1927537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations between positive and negative aeroions, tissue redox-state potential and heart frequency in rats.
    Puppi A; Práger P; Szabó IT; Gábriel M; Dely M
    Acta Physiol Hung; 1987; 70(1):41-9. PubMed ID: 3425333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the tissue redox state potential and dak/dt changes of [K+]0 activity during k-strophantoside or acetylcholine induced contractures.
    Wittmann I; Puppi A; Dely M
    Acta Physiol Acad Sci Hung; 1982; 60(4):233-6. PubMed ID: 6985315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the redox states of different tissues and the types of acetylcholine effect.
    Puppi A; Szalay L; Dely M
    Acta Biochim Biophys Acad Sci Hung; 1976; 11(1):63-73. PubMed ID: 961368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between the medium's redox potential and the types of acetylcholine and adrenaline effect. I.
    Puppi A; Tigyi A; Szalay L
    Acta Physiol Acad Sci Hung; 1972; 41(2):199-205. PubMed ID: 4640710
    [No Abstract]   [Full Text] [Related]  

  • 11. Model of redox regulation of hyper- or hypothyreoidism.
    Prager P; Puppi A; Gabriel M; Dely M; Mandi M
    Acta Physiol Hung; 1990; 75(1):3-20. PubMed ID: 2339606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of 3-methylcholanthrene on the redox-state of liver and red muscles in vivo.
    Tigyi A; Práger P; Puppi A; Zsoldos T
    Acta Physiol Hung; 1991; 77(2):169-71. PubMed ID: 1927540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between acetylcholine-evoked electrical activity, effect of cyclic AMP and actual redox state in frog rectus muscle.
    Puppi A; Práger P; Dely M
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(1-2):89-94. PubMed ID: 6278808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between the tissue redox-state and K(+)-contractures.
    Puppi A; Szekeres S; Dely M
    Acta Physiol Hung; 1990; 75(3):253-9. PubMed ID: 2144094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of chemical sympathectomy on the age dynamics of the heart rate and sensitivity of the heart to adrenaline and acetylcholine].
    Sitdikov FG; Savin VF
    Fiziol Zh SSSR Im I M Sechenova; 1987 Jan; 73(1):76-82. PubMed ID: 3569584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Might the cell damaging effect of alcohol be prevented by redox agents?
    Práger P; Strenger J; Puppi A; Angyal T; Detre Z; Matkovics B
    Acta Physiol Hung; 1984; 64(3-4):489-94. PubMed ID: 6442532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c.
    Feinberg BA; Liu X; Ryan MD; Schejter A; Zhang C; Margoliash E
    Biochemistry; 1998 Sep; 37(38):13091-101. PubMed ID: 9748315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of adrenaline and acetylcholine on the dynamics of the isolated frog heart].
    Schmitt-Neuroth G
    Z Kreislaufforsch; 1966 Aug; 55(8):846-57. PubMed ID: 5998665
    [No Abstract]   [Full Text] [Related]  

  • 20. [Combined effect of adrenaline and acetylcholine on the heart aunder conditions of blockage of cholinoreceptors by atropine].
    Krivosin'skiĭ LR; Kudrin AN
    Farmakol Toksikol; 1969; 32(3):282-5. PubMed ID: 5810940
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.