BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19505981)

  • 21. Therapeutic Delivery of Pip4k2c-Modified mRNA Attenuates Cardiac Hypertrophy and Fibrosis in the Failing Heart.
    Magadum A; Singh N; Kurian AA; Sharkar MTK; Sultana N; Chepurko E; Kaur K; Żak MM; Hadas Y; Lebeche D; Sahoo S; Hajjar R; Zangi L
    Adv Sci (Weinh); 2021 May; 8(10):2004661. PubMed ID: 34026458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling.
    Frieler RA; Mortensen RM
    Circulation; 2015 Mar; 131(11):1019-30. PubMed ID: 25779542
    [No Abstract]   [Full Text] [Related]  

  • 23. A Peptidyl Inhibitor that Blocks Calcineurin-NFAT Interaction and Prevents Acute Lung Injury.
    Dougherty PG; Karpurapu M; Koley A; Lukowski JK; Qian Z; Srinivas Nirujogi T; Rusu L; Chung S; Hummon AB; Li HW; Christman JW; Pei D
    J Med Chem; 2020 Nov; 63(21):12853-12872. PubMed ID: 33073986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.
    Schadler KL; Thomas NJ; Galie PA; Bhang DH; Roby KC; Addai P; Till JE; Sturgeon K; Zaslavsky A; Chen CS; Ryeom S
    Oncotarget; 2016 Oct; 7(40):65429-65440. PubMed ID: 27589843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of autophagy in cardiac hypertrophy.
    Li L; Xu J; He L; Peng L; Zhong Q; Chen L; Jiang Z
    Acta Biochim Biophys Sin (Shanghai); 2016 Jun; 48(6):491-500. PubMed ID: 27084518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asthma and pulmonary arterial hypertension: do they share a key mechanism of pathogenesis?
    Said SI; Hamidi SA; Gonzalez Bosc L
    Eur Respir J; 2010 Apr; 35(4):730-4. PubMed ID: 20356986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway.
    Bush E; Fielitz J; Melvin L; Martinez-Arnold M; McKinsey TA; Plichta R; Olson EN
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2870-5. PubMed ID: 14976250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ser14 phosphorylation of Bcl-xL mediates compensatory cardiac hypertrophy in male mice.
    Nakamura M; Keller MA; Fefelova N; Zhai P; Liu T; Tian Y; Ikeda S; Del Re DP; Li H; Xie LH; Sadoshima J
    Nat Commun; 2023 Sep; 14(1):5805. PubMed ID: 37726310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo.
    Varma E; Burghaus J; Schwarzl T; Sekaran T; Gupta P; Górska AA; Hofmann C; Stroh C; Jürgensen L; Kamuf-Schenk V; Li X; Medert R; Leuschner F; Kmietczyk V; Freichel M; Katus HA; Hentze MW; Frey N; Völkers M
    Basic Res Cardiol; 2023 Jun; 118(1):25. PubMed ID: 37378715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HIPK1 Inhibition Protects against Pathological Cardiac Hypertrophy by Inhibiting the CREB-C/EBPβ Axis.
    Bei Y; Zhu Y; Wei M; Yin M; Li L; Chen C; Huang Z; Liang X; Gao J; Yao J; van der Kraak PH; Vink A; Lei Z; Dai Y; Chen H; Liang Y; Sluijter JP; Xiao J
    Adv Sci (Weinh); 2023 Jun; 10(18):e2300585. PubMed ID: 37098980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling.
    O'Toole D; Zaeri AAI; Nicklin SA; French AT; Loughrey CM; Martin TP
    Cell Signal; 2020 Dec; 76():109770. PubMed ID: 32891693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart.
    Chen Z; Zhou Z; Peng X; Sun C; Yang D; Li C; Zhu R; Zhang P; Zheng L; Tang C
    J Physiol Sci; 2021 Nov; 71(1):33. PubMed ID: 34749643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta Blockade Prevents Cardiac Morphological and Molecular Remodelling in Experimental Uremia.
    Chinnappa S; Maqbool A; Viswambharan H; Mooney A; Denby L; Drinkhill M
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in glutamic oxaloacetic transaminase 2 during rat physiological and pathological cardiomyocyte hypertrophy.
    Liu X; Li X; Zhou H
    BMC Cardiovasc Disord; 2023 Dec; 23(1):595. PubMed ID: 38053021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders.
    Johnson EJ; Dieter BP; Marsh SA
    Life Sci; 2015 Feb; 123():100-6. PubMed ID: 25632833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy.
    Eggertsen TG; Saucerman JJ
    Br J Pharmacol; 2023 Nov; 180(21):2721-2735. PubMed ID: 37302817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myofibrillar remodeling in cardiac hypertrophy, heart failure and cardiomyopathies.
    Machackova J; Barta J; Dhalla NS
    Can J Cardiol; 2006 Sep; 22(11):953-68. PubMed ID: 16971981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes.
    Bazzazi H; Sang L; Dick IE; Joshi-Mukherjee R; Yang W; Yue DT
    J Physiol; 2015 Sep; 593(17):3865-84. PubMed ID: 26096996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of the NFAT transcription factor family involved in oxidative stress response.
    Zhang P; Huang C; Liu H; Zhang M; Liu L; Zhai Y; Zhang J; Yang J; Yang J
    J Cardiol; 2024 Jan; 83(1):30-36. PubMed ID: 37149283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcineurin signaling in the heart: The importance of time and place.
    Parra V; Rothermel BA
    J Mol Cell Cardiol; 2017 Feb; 103():121-136. PubMed ID: 28007541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.