These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1950601)

  • 1. Oxidative stress in skeletal muscle atrophied by immobilization.
    Kondo H; Miura M; Itokawa Y
    Acta Physiol Scand; 1991 Aug; 142(4):527-8. PubMed ID: 1950601
    [No Abstract]   [Full Text] [Related]  

  • 2. Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization.
    Kondo H; Miura M; Nakagaki I; Sasaki S; Itokawa Y
    Am J Physiol; 1992 May; 262(5 Pt 1):E583-90. PubMed ID: 1590370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of iron in oxidative stress in skeletal muscle atrophied by immobilization.
    Kondo H; Miura M; Kodama J; Ahmed SM; Itokawa Y
    Pflugers Arch; 1992 Jun; 421(2-3):295-7. PubMed ID: 1528723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress during recovery from muscle atrophy.
    Kondo H; Kodama J; Kishibe T; Itokawa Y
    FEBS Lett; 1993 Jul; 326(1-3):189-91. PubMed ID: 8325368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis?
    Servais S; Letexier D; Favier R; Duchamp C; Desplanches D
    Free Radic Biol Med; 2007 Mar; 42(5):627-35. PubMed ID: 17291986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy.
    Appell HJ; Duarte JA; Soares JM
    Int J Sports Med; 1997 Apr; 18(3):157-60. PubMed ID: 9187967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle.
    Järvinen MJ; Einola SA; Virtanen EO
    Arch Phys Med Rehabil; 1992 Mar; 73(3):253-7. PubMed ID: 1543429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation.
    Bar-Shai M; Carmeli E; Ljubuncic P; Reznick AZ
    Free Radic Biol Med; 2008 Jan; 44(2):202-14. PubMed ID: 18191756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle atrophy by limb immobilization is not caused by insulin resistance.
    Butler DT; Booth FW
    Horm Metab Res; 1984 Apr; 16(4):172-4. PubMed ID: 6373543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Newton's force as countermeasure for disuse atrophy.
    Rennie MJ; Phillips SM; Richter EA
    J Appl Physiol (1985); 2009 Jul; 107(1):6-7. PubMed ID: 19443745
    [No Abstract]   [Full Text] [Related]  

  • 11. Physiologic and biochemical effects of immobilization on muscle.
    Booth FW
    Clin Orthop Relat Res; 1987 Jun; (219):15-20. PubMed ID: 3581565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estrogen administration attenuates immobilization-induced skeletal muscle atrophy in male rats.
    Sugiura T; Ito N; Goto K; Naito H; Yoshioka T; Powers SK
    J Physiol Sci; 2006 Dec; 56(6):393-9. PubMed ID: 17052385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats.
    Lew H; Pyke S; Quintanilha A
    FEBS Lett; 1985 Jun; 185(2):262-6. PubMed ID: 3996604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Histochemical studies on skeletal muscle atrophy, with reference to the relationship between atrophy and muscle tension, and to the effect of electrical stimulation].
    Miyazawa H
    Nihon Seikeigeka Gakkai Zasshi; 1986 Aug; 60(8):1003-16. PubMed ID: 3782965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical generation in skeletal muscle atrophied by immobilization.
    Kondo H; Nishino K; Itokawa Y
    FEBS Lett; 1994 Aug; 349(2):169-72. PubMed ID: 8050561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat.
    Loughna PT; Goldspink DF; Goldspink G
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A133-8. PubMed ID: 3675479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regrowth of skeletal muscle atrophied from inactivity.
    Machida S; Booth FW
    Med Sci Sports Exerc; 2004 Jan; 36(1):52-9. PubMed ID: 14707768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle fibre size and number following immobilisation atrophy.
    Nicks DK; Beneke WM; Key RM; Timson BF
    J Anat; 1989 Apr; 163():1-5. PubMed ID: 2558097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markers of oxidative stress in the skeletal muscle of patients on haemodialysis.
    Crowe AV; McArdle A; McArdle F; Pattwell DM; Bell GM; Kemp GJ; Bone JM; Griffiths RD; Jackson MJ
    Nephrol Dial Transplant; 2007 Apr; 22(4):1177-83. PubMed ID: 17213227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.