These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19506595)

  • 1. Autofluorescence imaging of NADH and flavoproteins in the rat brain: insights from Monte Carlo simulations.
    L'Heureux B; Gurden H; Pain F
    Opt Express; 2009 Jun; 17(12):9477-90. PubMed ID: 19506595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response.
    Baraghis E; Devor A; Fang Q; Srinivasan VJ; Wu W; Lesage F; Ayata C; Kasischke KA; Boas DA; Sakadzić S
    J Biomed Opt; 2011 Oct; 16(10):106003. PubMed ID: 22029350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb.
    Renaud R; Martin C; Gurden H; Pain F
    J Biomed Opt; 2012 Jan; 17(1):016012. PubMed ID: 22352662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Redox Imaging of Fixed Unstained Muscle Slides Reveals Useful Biological Information.
    Xu HN; Zhao H; Chellappa K; Davis JG; Nioka S; Baur JA; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):417-425. PubMed ID: 30977079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence.
    Shibuki K; Hishida R; Murakami H; Kudoh M; Kawaguchi T; Watanabe M; Watanabe S; Kouuchi T; Tanaka R
    J Physiol; 2003 Jun; 549(Pt 3):919-27. PubMed ID: 12730344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional imaging of primary visual cortex using flavoprotein autofluorescence.
    Husson TR; Mallik AK; Zhang JX; Issa NP
    J Neurosci; 2007 Aug; 27(32):8665-75. PubMed ID: 17687044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo.
    Reinert KC; Gao W; Chen G; Ebner TJ
    J Neurosci Res; 2007 Nov; 85(15):3221-32. PubMed ID: 17520745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo.
    Reinert KC; Dunbar RL; Gao W; Chen G; Ebner TJ
    J Neurophysiol; 2004 Jul; 92(1):199-211. PubMed ID: 14985415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex.
    Lang S; Dercksen VJ; Sakmann B; Oberlaender M
    Neural Netw; 2011 Nov; 24(9):998-1011. PubMed ID: 21775101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals.
    Chance B; Schoener B; Oshino R; Itshak F; Nakase Y
    J Biol Chem; 1979 Jun; 254(11):4764-71. PubMed ID: 220260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo method for locally multivariate brain mapping.
    Björnsdotter M; Rylander K; Wessberg J
    Neuroimage; 2011 May; 56(2):508-16. PubMed ID: 20674749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models.
    Abdellah M; Bilgili A; Eilemann S; Markram H; Schürmann F
    BMC Bioinformatics; 2015; 16 Suppl 11(Suppl 11):S8. PubMed ID: 26329404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells.
    Koke JR; Wylie W; Wills M
    Cytobios; 1981; 32(127-128):139-45. PubMed ID: 7347273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term plasticity visualized with flavoprotein autofluorescence in the somatosensory cortex of anaesthetized rats.
    Murakami H; Kamatani D; Hishida R; Takao T; Kudoh M; Kawaguchi T; Tanaka R; Shibuki K
    Eur J Neurosci; 2004 Mar; 19(5):1352-60. PubMed ID: 15016093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence spectroscopy and imaging of myocardial apoptosis.
    Ranji M; Kanemoto S; Matsubara M; Grosso MA; Gorman JH; Gorman RC; Jaggard DL; Chance B
    J Biomed Opt; 2006; 11(6):064036. PubMed ID: 17212559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet-based multi-resolution statistics for optical imaging signals: Application to automated detection of odour activated glomeruli in the mouse olfactory bulb.
    Bathellier B; Van De Ville D; Blu T; Unser M; Carleton A
    Neuroimage; 2007 Feb; 34(3):1020-35. PubMed ID: 17185002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo analysis of hepatic NADH fluorescence. Methodological approach to exclude Ito-cell vitamin A-derived autofluorescence.
    Burkhardt M; Vollmar B; Menger MD
    Adv Exp Med Biol; 1998; 454():83-9. PubMed ID: 9889879
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.