BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19506614)

  • 1. The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays.
    Forestiere C; Miano G; Boriskina SV; Dal Negro L
    Opt Express; 2009 Jun; 17(12):9648-61. PubMed ID: 19506614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoplasmonics of prime number arrays.
    Forestiere C; Walsh GF; Miano G; Dal Negro L
    Opt Express; 2009 Dec; 17(26):24288-303. PubMed ID: 20052140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.
    Dallapiccola R; Gopinath A; Stellacci F; Dal Negro L
    Opt Express; 2008 Apr; 16(8):5544-55. PubMed ID: 18542657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
    Gopinath A; Boriskina SV; Reinhard BM; Dal Negro L
    Opt Express; 2009 Mar; 17(5):3741-53. PubMed ID: 19259215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays.
    Bar-Lev D; Scheuer J
    Opt Express; 2013 Dec; 21(24):29165-78. PubMed ID: 24514468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid.
    Kaplan A; Tomes M; Carmon T; Kozlov M; Cohen O; Bartal G; Schwefel HG
    Opt Express; 2013 Jun; 21(12):14169-80. PubMed ID: 23787608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical scattering resonances of single and coupled dimer plasmonic nanoantennas.
    Muskens OL; Giannini V; Sánchez-Gil JA; Gómez Rivas J
    Opt Express; 2007 Dec; 15(26):17736-46. PubMed ID: 19551070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD; Glembocki O; Bezares FJ; Bassim ND; Rendell RW; Feygelson M; Ukaegbu M; Kasica R; Shirey L; Hosten C
    ACS Nano; 2011 May; 5(5):4046-55. PubMed ID: 21480637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping magnetic near-field distributions of plasmonic nanoantennas.
    Denkova D; Verellen N; Silhanek AV; Valev VK; Van Dorpe P; Moshchalkov VV
    ACS Nano; 2013 Apr; 7(4):3168-76. PubMed ID: 23464670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase sensitive sensor on plasmonic nanograting structures.
    Maisonneuve M; Kelly Od; Blanchard-Dionne AP; Patskovsky S; Meunier M
    Opt Express; 2011 Dec; 19(27):26318-24. PubMed ID: 22274216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circularly symmetric light scattering from nanoplasmonic spirals.
    Trevino J; Cao H; Dal Negro L
    Nano Lett; 2011 May; 11(5):2008-16. PubMed ID: 21466155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating high density nanoantenna arrays via plasmon enhanced particle-cavity (PEP-C) architectures.
    Ross BM; Lee LP
    Opt Express; 2009 Apr; 17(8):6860-6. PubMed ID: 19365513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband plasmonic nanoantenna with an adjustable spectral response.
    Unlü ES; Tok RU; Sendur K
    Opt Express; 2011 Jan; 19(2):1000-6. PubMed ID: 21263638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators.
    Zand I; Mahigir A; Pakizeh T; Abrishamian MS
    Opt Express; 2012 Mar; 20(7):7516-25. PubMed ID: 22453431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the characteristics of TM-pass/TE-stop polarizer designed using plasmonic nanostructures.
    Mahros AM; Tharwat MM; Ashry I
    Appl Opt; 2015 May; 54(14):4464-70. PubMed ID: 25967503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase and polarization control as a route to plasmonic nanodevices.
    Sukharev M; Seideman T
    Nano Lett; 2006 Apr; 6(4):715-9. PubMed ID: 16608270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadratic phase matching in nonlinear plasmonic nanoscale waveguides.
    Davoyan AR; Shadrivov IV; Kivshar YS
    Opt Express; 2009 Oct; 17(22):20063-8. PubMed ID: 19997230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection.
    Lee SY; Walsh GF; Dal Negro L
    Opt Express; 2013 Feb; 21(4):4945-57. PubMed ID: 23482027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.