These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19506654)

  • 1. Single-particle motional oscillator powered by laser.
    Kaplan AE
    Opt Express; 2009 Jun; 17(12):10035-43. PubMed ID: 19506654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam.
    Cheng H; Zang W; Zhou W; Tian J
    Opt Express; 2010 Sep; 18(19):20384-94. PubMed ID: 20940930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization gradient: exploring an original route for optical trapping and manipulation.
    Cipparrone G; Ricardez-Vargas I; Pagliusi P; Provenzano C
    Opt Express; 2010 Mar; 18(6):6008-13. PubMed ID: 20389620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical vortex trap for resonant confinement of metal nanoparticles.
    Dienerowitz M; Mazilu M; Reece PJ; Krauss TF; Dholakia K
    Opt Express; 2008 Mar; 16(7):4991-9. PubMed ID: 18542599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals.
    Zhang X; Wang J; Tang B; Tan X; Rupp RA; Pan L; Kong Y; Sun Q; Xu J
    Opt Express; 2009 Jun; 17(12):9981-8. PubMed ID: 19506648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
    Miao X; Wilson BK; Pun SH; Lin LY
    Opt Express; 2008 Sep; 16(18):13517-25. PubMed ID: 18772960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In plane manipulation of a dielectric nanobeam with gradient optical forces.
    Favuzzi PA; Bardoux R; Asano T; Kawakami Y; Noda S
    Opt Express; 2013 Dec; 21(24):29129-39. PubMed ID: 24514464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical tweezers for the micromanipulation of plant cytoplasm and organelles.
    Hawes C; Osterrieder A; Sparkes IA; Ketelaar T
    Curr Opin Plant Biol; 2010 Dec; 13(6):731-5. PubMed ID: 21093352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inversion of gradient forces for high refractive index particles in optical trapping.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2010 Mar; 18(6):5802-8. PubMed ID: 20389597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical micromanipulation of nanoparticles and cells inside living zebrafish.
    Johansen PL; Fenaroli F; Evensen L; Griffiths G; Koster G
    Nat Commun; 2016 Mar; 7():10974. PubMed ID: 26996121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
    Chang CB; Huang WX; Lee KH; Sung HJ
    Opt Express; 2012 Oct; 20(21):24068-84. PubMed ID: 23188374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of single-molecule trapping in a nanochannel.
    Robinson WN; Davis LM
    J Biomed Opt; 2010; 15(4):045006. PubMed ID: 20799801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams.
    Morris JE; Carruthers AE; Mazilu M; Reece PJ; Cizmar T; Fischer P; Dholakia K
    Opt Express; 2008 Jul; 16(14):10117-29. PubMed ID: 18607419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection.
    Louchev OA; Juodkazis S; Murazawa N; Wada S; Misawa H
    Opt Express; 2008 Apr; 16(8):5673-80. PubMed ID: 18542674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential detection of dual traps improves the spatial resolution of optical tweezers.
    Moffitt JR; Chemla YR; Izhaky D; Bustamante C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9006-11. PubMed ID: 16751267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion analysis of optically trapped particles and cells using 2D Fourier analysis.
    Kristensen MV; Ahrendt P; Lindballe TB; Nielsen OH; Kylling AP; Karstoft H; Imparato A; Hosta-Rigau L; Stadler B; Stapelfeldt H; Keiding SR
    Opt Express; 2012 Jan; 20(3):1953-62. PubMed ID: 22330436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical forces on small magnetodielectric particles.
    Nieto-Vesperinas M; Sáenz JJ; Gómez-Medina R; Chantada L
    Opt Express; 2010 May; 18(11):11428-43. PubMed ID: 20589003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.