These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19506690)

  • 1. Probing dynamics at interfaces: resonance enhanced dynamic light scattering.
    Plum MA; Steffen W; Fytas G; Knoll W; Menges B
    Opt Express; 2009 Jun; 17(12):10364-71. PubMed ID: 19506690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays.
    Lee SY; Forestiere C; Pasquale AJ; Trevino J; Walsh G; Galli P; Romagnoli M; Dal Negro L
    Opt Express; 2011 Nov; 19(24):23818-30. PubMed ID: 22109407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.
    Chen T; Du C; Tan LH; Shen Z; Chen H
    Nanoscale; 2011 Apr; 3(4):1575-81. PubMed ID: 21286607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a silicon probe on gold nanoparticles on glass under evanescent illumination.
    Huda GM; Donev EU; Mengüç MP; Hastings JT
    Opt Express; 2011 Jun; 19(13):12679-87. PubMed ID: 21716511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.
    Paul A; Solis D; Bao K; Chang WS; Nauert S; Vidgerman L; Zubarev ER; Nordlander P; Link S
    ACS Nano; 2012 Sep; 6(9):8105-13. PubMed ID: 22900780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids.
    Cole RM; Mahajan S; Bartlett PN; Baumberg JJ
    Opt Express; 2009 Aug; 17(16):13298-308. PubMed ID: 19654734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and experimental investigation of optical transparency in gold island films.
    Axelevitch A; Apter B; Golan G
    Opt Express; 2013 Feb; 21(4):4126-38. PubMed ID: 23481946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interacting plasmon and phonon polaritons in aligned nano- and microwires.
    Myroshnychenko V; Stefanski A; Manjavacas A; Kafesaki M; Merino RI; Orera VM; Pawlak DA; García de Abajo FJ
    Opt Express; 2012 May; 20(10):10879-87. PubMed ID: 22565713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanorod Rotary Motors Driven by Resonant Light Scattering.
    Shao L; Yang ZJ; Andrén D; Johansson P; Käll M
    ACS Nano; 2015 Dec; 9(12):12542-51. PubMed ID: 26564095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edge scattering of surface plasmons excited by scanning tunneling microscopy.
    Zhang Y; Boer-Duchemin E; Wang T; Rogez B; Comtet G; Le Moal E; Dujardin G; Hohenau A; Gruber C; Krenn JR
    Opt Express; 2013 Jun; 21(12):13938-48. PubMed ID: 23787583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced nonlinear response from metal surfaces.
    Renger J; Quidant R; Novotny L
    Opt Express; 2011 Jan; 19(3):1777-85. PubMed ID: 21368992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface.
    Yang T; Crozier KB
    Opt Express; 2008 Jun; 16(12):8570-80. PubMed ID: 18545570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional excitation of surface plasmon polaritons via nanoslits under varied incidence observed using leakage radiation microscopy.
    Sonnefraud Y; Kerman S; Di Martino G; Lei DY; Maier SA
    Opt Express; 2012 Feb; 20(5):4893-902. PubMed ID: 22418295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres.
    Slablab A; Le Xuan L; Zielinski M; de Wilde Y; Jacques V; Chauvat D; Roch JF
    Opt Express; 2012 Jan; 20(1):220-7. PubMed ID: 22274345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM; Xia S; Zou H
    Nanotechnology; 2009 Jun; 20(25):255702. PubMed ID: 19491460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.