These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 19506937)
1. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Mufarrege MM; Hadad HR; Maine MA Arch Environ Contam Toxicol; 2010 Jan; 58(1):53-61. PubMed ID: 19506937 [TBL] [Abstract][Full Text] [Related]
2. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Sinha S; Saxena R; Singh S Chemosphere; 2005 Feb; 58(5):595-604. PubMed ID: 15620753 [TBL] [Abstract][Full Text] [Related]
3. Improvement of Cr phytoremediation by Pistia stratiotes in presence of nutrients. Di Luca GA; Hadad HR; Mufarrege MM; Maine MA; Sánchez GC Int J Phytoremediation; 2014; 16(2):167-78. PubMed ID: 24912208 [TBL] [Abstract][Full Text] [Related]
4. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323 [TBL] [Abstract][Full Text] [Related]
5. Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes. Hadad HR; Maine MA; Mufarrege MM; Del Sastre MV; Di Luca GA J Hazard Mater; 2011 Jun; 190(1-3):1016-22. PubMed ID: 21555183 [TBL] [Abstract][Full Text] [Related]
6. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Ganesh KS; Baskaran L; Rajasekaran S; Sumathi K; Chidambaram AL; Sundaramoorthy P Colloids Surf B Biointerfaces; 2008 Jun; 63(2):159-63. PubMed ID: 18206355 [TBL] [Abstract][Full Text] [Related]
7. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Megateli S; Semsari S; Couderchet M Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce ( Şentürk İ; Eyceyurt Divarcı NS; Öztürk M Int J Phytoremediation; 2023; 25(5):550-561. PubMed ID: 35786212 [TBL] [Abstract][Full Text] [Related]
9. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Hadad HR; Maine MA; Bonetto CA Chemosphere; 2006 Jun; 63(10):1744-53. PubMed ID: 16289223 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Samecka-Cymerman A; Kempers AJ Ecotoxicol Environ Saf; 1996 Dec; 35(3):242-7. PubMed ID: 9007000 [TBL] [Abstract][Full Text] [Related]
11. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Seth CS; Chaturvedi PK; Misra V Environ Toxicol; 2007 Dec; 22(6):539-49. PubMed ID: 18000854 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal uptake by Euplotes mutabilis and its possible use in bioremediation of industrial wastewater. Rehman A; Shakoori FR; Shakoori AR Bull Environ Contam Toxicol; 2009 Jul; 83(1):130-5. PubMed ID: 19387521 [TBL] [Abstract][Full Text] [Related]
13. Embryo toxicity of pesticides and heavy metals to the ramshorn snail, Marisa cornuarietis (Prosobranchia). Sawasdee B; Köhler HR Chemosphere; 2009 Jun; 75(11):1539-47. PubMed ID: 19278713 [TBL] [Abstract][Full Text] [Related]
14. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment. Ardelan MV; Steinnes E; Lierhagen S; Linde SO Sci Total Environ; 2009 Dec; 407(24):6255-66. PubMed ID: 19800660 [TBL] [Abstract][Full Text] [Related]
15. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. Lakra KC; Lal B; Banerjee TK Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868 [TBL] [Abstract][Full Text] [Related]
16. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Galal TM; Eid EM; Dakhil MA; Hassan LM Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Drost W; Matzke M; Backhaus T Chemosphere; 2007 Feb; 67(1):36-43. PubMed ID: 17157350 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Odjegba VJ; Fasidi IO Ecotoxicology; 2004 Oct; 13(7):637-46. PubMed ID: 15673213 [TBL] [Abstract][Full Text] [Related]
19. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn. Mufarrege MM; Hadad HR; Di Luca GA; Maine MA Environ Sci Pollut Res Int; 2015 Jan; 22(1):286-92. PubMed ID: 25062549 [TBL] [Abstract][Full Text] [Related]
20. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Mishra VK; Tripathi BD Bioresour Technol; 2008 Oct; 99(15):7091-7. PubMed ID: 18296043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]