These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19507794)

  • 1. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.
    Rosales P; Marcos S
    J Refract Surg; 2009 May; 25(5):421-8. PubMed ID: 19507794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study.
    de Castro A; Rosales P; Marcos S
    J Cataract Refract Surg; 2007 Mar; 33(3):418-29. PubMed ID: 17321392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging.
    Rosales P; Dubbelman M; Marcos S; van der Heijde R
    J Vis; 2006 Sep; 6(10):1057-67. PubMed ID: 17132077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I. Image processing methods.
    Cook CA; Koretz JF
    J Opt Soc Am A Opt Image Sci Vis; 1998 Jun; 15(6):1473-85. PubMed ID: 9612937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging.
    Ortiz S; Siedlecki D; Grulkowski I; Remon L; Pascual D; Wojtkowski M; Marcos S
    Opt Express; 2010 Feb; 18(3):2782-96. PubMed ID: 20174107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraocular lens alignment from purkinje and Scheimpflug imaging.
    Rosales P; De Castro A; Jiménez-Alfaro I; Marcos S
    Clin Exp Optom; 2010 Nov; 93(6):400-8. PubMed ID: 20738324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thickness of the aging human lens obtained from corrected Scheimpflug images.
    Dubbelman M; van der Heijde GL; Weeber HA
    Optom Vis Sci; 2001 Jun; 78(6):411-6. PubMed ID: 11444630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images.
    Sasaki K; Sakamoto Y; Shibata T; Nakaizumi H; Emori Y
    J Cataract Refract Surg; 1989 Jul; 15(4):454-7. PubMed ID: 2778695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refractive correction method for digital charge-coupled device-recorded Scheimpflug photographs by means of ray tracing.
    Fink W
    J Biomed Opt; 2005; 10(2):024003. PubMed ID: 15910077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automated biometry of in situ intraocular lenses using long scan depth spectral-domain optical coherence tomography.
    Chen Q; Leng L; Zhu D; Wang Y; Shao Y; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jan; 40(1):37-45. PubMed ID: 24335453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multi-purpose camera: a new anterior eye segment analysis system.
    Sasaki K; Sakamoto Y; Shibata T; Emori Y
    Ophthalmic Res; 1990; 22 Suppl 1():3-8. PubMed ID: 2388748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of corneal power measurements by a new Scheimpflug camera combined with Placido-disk corneal topography for intraocular lens power calculation in unoperated eyes.
    Savini G; Barboni P; Carbonelli M; Hoffer KJ
    J Cataract Refract Surg; 2012 May; 38(5):787-92. PubMed ID: 22386277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ray-tracing method and thin-lens formula in intraocular lens power calculations.
    Jin H; Rabsilber T; Ehmer A; Borkenstein AF; Limberger IJ; Guo H; Auffarth GU
    J Cataract Refract Surg; 2009 Apr; 35(4):650-62. PubMed ID: 19304085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Scheimpflug photographic imaging following implantation of anterior and posterior chamber phakic intraocular lenses: preliminary results].
    Baumeister M; Bühren J; Schnitzler EM; Ohrloff C; Kohnen T
    Klin Monbl Augenheilkd; 2001 Feb; 218(2):125-30. PubMed ID: 11258125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotating slit image camera TOPCON SL 45. New developments for simultaneous image acquisition by photographic and CCD-assisted on-line documentation.
    Dragomirescu V; Hockwin O
    Ophthalmic Res; 1996; 28 Suppl 2():102-8. PubMed ID: 8883096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of anterior segment parameters and axial length measurements performed on a Scheimpflug device with biometry function and a reference optical biometer.
    Muzyka-Woźniak M; Oleszko A
    Int Ophthalmol; 2019 May; 39(5):1115-1122. PubMed ID: 29700651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography.
    Zhu D; Shao Y; Leng L; Xu Z; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jul; 40(4):232-8. PubMed ID: 24901975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved biometry of the anterior eye segment.
    Kampfer T; Wegener A; Dragomirescu V; Hockwin O
    Ophthalmic Res; 1989; 21(3):239-48. PubMed ID: 2779977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agreement between Scheimpflug photography and A-scan ultrasonography in anterior segment ocular measurements in children.
    Tong L; Wong EH; Chan YH; Balakrishnan V
    Optom Vis Sci; 2003 Jul; 80(7):529-34. PubMed ID: 12858088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox.
    Dubbelman M; Van der Heijde GL
    Vision Res; 2001 Jun; 41(14):1867-77. PubMed ID: 11369049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.