These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 19507838)

  • 1. A flexible radical-based approach to TMS-substituted propargyl alcohols and to 2,3-allenols.
    Li Z; Zard SZ
    Org Lett; 2009 Jul; 11(13):2868-71. PubMed ID: 19507838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient CuCN-catalyzed synthesis of optically active 2,3-allenols from optically active 1-substituted 4-chloro-2-butyn-1-ols.
    Li J; Kong W; Fu C; Ma S
    J Org Chem; 2009 Jul; 74(14):5104-6. PubMed ID: 19476327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Synthesis of α-Allenols from TMS-Protected Alkynes and Aldehydes Mediated by Tetrabutylammonium Fluoride.
    Huang X; Bugarin A
    Chemistry; 2016 Aug; 22(36):12696-700. PubMed ID: 27401054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive cyclization of o-nitrophenyl propargyl alcohols: facile synthesis of substituted quinolines.
    Sandelier MJ; DeShong P
    Org Lett; 2007 Aug; 9(17):3209-12. PubMed ID: 17645347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly regio- and stereoselective cyclic iodoetherification of 4,5-alkadienols. An efficient preparation of 2-(1'(Z)-iodoalkenyl)tetrahydrofurans.
    Lü B; Jiang X; Fu C; Ma S
    J Org Chem; 2009 Jan; 74(1):438-41. PubMed ID: 19053197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Synthesis of Substituted α-Allenols via Iron-Catalyzed Cross-Coupling of Propargyl Carboxylates with Grignard Reagents.
    Kessler SN; Hundemer F; Bäckvall JE
    ACS Catal; 2016 Nov; 6(11):7448-7451. PubMed ID: 27840771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-catalyzed silylation reactions of propargyl epoxides: easy access to 2,3-allenols and stereodefined alkenes.
    Chang XH; Liu ZL; Luo YC; Yang C; Liu XW; Da BC; Li JJ; Ahmad T; Loh TP; Xu YH
    Chem Commun (Camb); 2017 Aug; 53(67):9344-9347. PubMed ID: 28783200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal phenomenon of reaction velocity in a mixed reaction system: silylations between simple alcohols and alpha- or beta-hydroxyketones using anilinosilanes and catalytic TBAF agent.
    Iida A; Hashimoto C; Misaki T; Katsumoto Y; Ozaki Y; Tanabe Y
    J Org Chem; 2007 Jun; 72(13):4970-3. PubMed ID: 17536862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical Nitrososulfonation of Propargyl Alcohols: Thiazolidine-2,4-dione-Assisted Synthesis of 5-Alykyl-4-sulfonylisoxazoles.
    Nakano T; Kousaka N; Nakayama A; Kato Y; Takashima K; Tanabe G; Yoshimatsu M
    Org Lett; 2024 Mar; 26(9):1753-1757. PubMed ID: 38411088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical support for the involvement of a radical pathway in the formation of allenylzincs from propargyl iodides and dialkylzincs: influence of zinc coordination.
    Jammi S; Mouysset D; Siri D; Bertrand MP; Feray L
    J Org Chem; 2013 Feb; 78(4):1589-603. PubMed ID: 23311748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extremely facile synthesis of furans, pyrroles, and thiophenes by the dehydrative cyclization of propargyl alcohols.
    Aponick A; Li CY; Malinge J; Marques EF
    Org Lett; 2009 Oct; 11(20):4624-7. PubMed ID: 19772313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ring-closing reaction of allenic/propargylic anions generated by base treatment of sulfonylallenes.
    Kitagaki S; Teramoto S; Mukai C
    Org Lett; 2007 Jun; 9(13):2549-52. PubMed ID: 17511462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new efficient route to 2-substituted azulenes based on sulfonyl group directed lithiation.
    Shibasaki T; Ooishi T; Yamanouchi N; Murafuji T; Kurotobi K; Sugihara Y
    J Org Chem; 2008 Oct; 73(20):7971-7. PubMed ID: 18811202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A synthesis of (1E,3E)-TMS dienes from keto-xanthates via Chugaev-type elimination.
    Goh KK; Kim S; Zard SZ
    J Org Chem; 2013 Dec; 78(23):12274-9. PubMed ID: 24180486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient synthetic method of multisubstituted allenes from the reactions of allylindium reagents with 3 degree-propargyl alcohols.
    Lee K; Lee PH
    Org Lett; 2008 Jun; 10(12):2441-4. PubMed ID: 18476748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regio- and stereoselective homolytic hydrostannylation of propargyl alcohols and ethers with dibutylchlorostannane.
    Miura K; Wang D; Matsumoto Y; Fujisawa N; Hosomi A
    J Org Chem; 2003 Oct; 68(22):8730-2. PubMed ID: 14575513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu-Catalyzed hydrophosphorylative ring opening of propargyl epoxides: highly selective access to 4-phosphoryl 2,3-allenols.
    Shen R; Yang J; Zhao H; Feng Y; Zhang L; Han LB
    Chem Commun (Camb); 2016 Sep; 52(80):11959-11962. PubMed ID: 27709204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To stay as allene or go further? Synthesis of novel phosphono-heterocycles and polycyclics via propargyl alcohols.
    Srinivas V; Sajna KV; Swamy KC
    Chem Commun (Camb); 2011 May; 47(19):5629-31. PubMed ID: 21483904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of prostaglandin and phytoprostane B1 via regioselective intermolecular Pauson-Khand reactions.
    Vázquez-Romero A; Cárdenas L; Blasi E; Verdaguer X; Riera A
    Org Lett; 2009 Jul; 11(14):3104-7. PubMed ID: 19545162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O-Directed free-radical hydrostannations of propargyl ethers, acetals, and alcohols with Ph3SnH and Et3B.
    Dimopoulos P; Athlan A; Manaviazar S; George J; Walters M; Lazarides L; Aliev AE; Hale KJ
    Org Lett; 2005 Nov; 7(24):5369-72. PubMed ID: 16288508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.