BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 19507854)

  • 1. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts.
    Chen YH; Hung HH; Huang MH
    J Am Chem Soc; 2009 Jul; 131(25):9114-21. PubMed ID: 19507854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of branched gold nanocrystals by a seeding growth approach.
    Kuo CH; Huang MH
    Langmuir; 2005 Mar; 21(5):2012-6. PubMed ID: 15723503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple synthesis of Pd-Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions.
    Jang Y; Chung J; Kim S; Jun SW; Kim BH; Lee DW; Kim BM; Hyeon T
    Phys Chem Chem Phys; 2011 Feb; 13(7):2512-6. PubMed ID: 21203638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of ionic liquids in the synthesis of nanocrystals and nanorods of semiconducting metal chalcogenides.
    Biswas K; Rao CN
    Chemistry; 2007; 13(21):6123-9. PubMed ID: 17497619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast studies of gold, nickel, and palladium nanorods.
    Sando GM; Berry AD; Owrutsky JC
    J Chem Phys; 2007 Aug; 127(7):074705. PubMed ID: 17718625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles.
    Wu HY; Liu M; Huang MH
    J Phys Chem B; 2006 Oct; 110(39):19291-4. PubMed ID: 17004782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures.
    Wu HL; Kuo CH; Huang MH
    Langmuir; 2010 Jul; 26(14):12307-13. PubMed ID: 20557088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-triggered self-assembly of ZnO: from nanocrystals to nanorods to tablets.
    Hu Y; Mei T; Guo J; White T
    Inorg Chem; 2007 Dec; 46(26):11031-5. PubMed ID: 18041819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous phase synthesis of palladium tripod nanostructures for Sonogashira coupling reactions.
    Chu YT; Chanda K; Lin PH; Huang MH
    Langmuir; 2012 Jul; 28(30):11258-64. PubMed ID: 22809109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-induced variations in lattice dimension, photoluminescence, and photocatalytic activity of ZnO nanorods.
    Qiu X; Li L; Fu X; Li G
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1301-6. PubMed ID: 18468143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological control and luminescent properties of YVO4:Eu nanocrystals.
    Wu X; Tao Y; Song C; Mao C; Dong L; Zhu J
    J Phys Chem B; 2006 Aug; 110(32):15791-6. PubMed ID: 16898727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and catalytic properties of highly branched palladium nanostructures using seeded growth.
    Graham L; Collins G; Holmes JD; Tilley RD
    Nanoscale; 2016 Feb; 8(5):2867-74. PubMed ID: 26763185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and mechanistic study of palladium nanobars and nanorods.
    Xiong Y; Cai H; Wiley BJ; Wang J; Kim MJ; Xia Y
    J Am Chem Soc; 2007 Mar; 129(12):3665-75. PubMed ID: 17335211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor.
    Larsen TH; Sigman M; Ghezelbash A; Doty RC; Korgel BA
    J Am Chem Soc; 2003 May; 125(19):5638-9. PubMed ID: 12733895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size effects in the oriented-attachment growth process: the case of Cu nanoseeds.
    Shen S; Zhuang J; Xu X; Nisar A; Hu S; Wang X
    Inorg Chem; 2009 Jun; 48(12):5117-28. PubMed ID: 19413306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast synthesis of PbS nanocrystals in aqueous solution with shape evolution from cubic to octahedral structures and their assembled structures.
    Wu JK; Lyu LM; Liao CW; Wang YN; Huang MH
    Chemistry; 2012 Nov; 18(45):14473-8. PubMed ID: 23015526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.
    Cho S; Kim S; Lee KH
    J Colloid Interface Sci; 2011 Sep; 361(2):436-42. PubMed ID: 21708385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.