BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

911 related articles for article (PubMed ID: 19507893)

  • 41. A comparative study on the antimutagenic properties of aqueous extracts of Aspalathus linearis (rooibos), different Cyclopia spp. (honeybush) and Camellia sinensis teas.
    van der Merwe JD; Joubert E; Richards ES; Manley M; Snijman PW; Marnewick JL; Gelderblom WC
    Mutat Res; 2006 Dec; 611(1-2):42-53. PubMed ID: 16949333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea.
    Tong T; Liu YJ; Kang J; Zhang CM; Kang SG
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31408939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea.
    Stewart AJ; Mullen W; Crozier A
    Mol Nutr Food Res; 2005 Jan; 49(1):52-60. PubMed ID: 15602765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea.
    Jayasekera S; Kaur L; Molan AL; Garg ML; Moughan PJ
    Food Chem; 2014; 152():546-51. PubMed ID: 24444973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS.
    Sang S; Tian S; Stark RE; Yang CS; Ho CT
    Bioorg Med Chem; 2004 Jun; 12(11):3009-17. PubMed ID: 15142559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-activity relationships of tea compounds against human cancer cells.
    Friedman M; Mackey BE; Kim HJ; Lee IS; Lee KR; Lee SU; Kozukue E; Kozukue N
    J Agric Food Chem; 2007 Jan; 55(2):243-53. PubMed ID: 17227049
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chain-breaking antioxidant activity and cyclic voltammetry characterization of polyphenols in a range of green, oolong, and black teas.
    Roginsky V; Barsukova T; Hsu CF; Kilmartin PA
    J Agric Food Chem; 2003 Sep; 51(19):5798-802. PubMed ID: 12952436
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea.
    Wang Q; Peng C; Gong J
    J Sci Food Agric; 2011 Oct; 91(13):2412-8. PubMed ID: 21656777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in the composition of raw tea leaves from the Korean Yabukida plant during high-temperature processing to pan-fried Kamairi-cha green tea.
    Friedman M; Levin CE; Choi SH; Lee SU; Kozukue N
    J Food Sci; 2009 Jun; 74(5):C406-12. PubMed ID: 19646035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Preparation and component analysis of tea pigments].
    Li D; Wan X; Xia T
    Wei Sheng Yan Jiu; 2004 Nov; 33(6):698-700. PubMed ID: 15727181
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Is green tea better than black tea in reducing atherosclerosis?
    Cheng TO
    Circulation; 2004 Sep; 110(13):e332; author reply e332. PubMed ID: 15451816
    [No Abstract]   [Full Text] [Related]  

  • 52. Diversity among various forms of catechins and its synthesizing enzyme (phenylalanine ammonia lyase) in relation to quality of black tea (Camellia spp.).
    Kottur G; Venkatesan S; Senthil Kumar RS; Murugesan S
    J Sci Food Agric; 2010 Jul; 90(9):1533-7. PubMed ID: 20549808
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea.
    Sarkar A; Bhaduri A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):173-8. PubMed ID: 11374887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea.
    Munoz-Munoz JL; García-Molina F; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    J Agric Food Chem; 2008 Oct; 56(19):9215-24. PubMed ID: 18788750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product.
    Jhoo JW; Lo CY; Li S; Sang S; Ang CY; Heinze TM; Ho CT
    J Agric Food Chem; 2005 Jul; 53(15):6146-50. PubMed ID: 16029009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Screen and genetic assessment of tea germplasms with elevated methylated catechin, (-)-epigallocatechin-3-O-(3-O-methyl)gallate.
    Lee SC; Yan RH; Cheng HY; Wu SS; Liu SY
    J Agric Food Chem; 2009 Oct; 57(19):8906-12. PubMed ID: 19761185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theflavins and theasinensin A derived from fermented tea have antihyperglycemic and hypotriacylglycerolemic effects in KK-A(y) mice and Sprague-Dawley rats.
    Miyata Y; Tamaru S; Tanaka T; Tamaya K; Matsui T; Nagata Y; Tanaka K
    J Agric Food Chem; 2013 Oct; 61(39):9366-72. PubMed ID: 24011231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins.
    Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I
    J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Green and black tea are equally potent stimuli of NO production and vasodilation: new insights into tea ingredients involved.
    Lorenz M; Urban J; Engelhardt U; Baumann G; Stangl K; Stangl V
    Basic Res Cardiol; 2009 Jan; 104(1):100-10. PubMed ID: 19101751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin.
    Tanaka T; Mine C; Inoue K; Matsuda M; Kouno I
    J Agric Food Chem; 2002 Mar; 50(7):2142-8. PubMed ID: 11902970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.