BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19507931)

  • 1. Effect of a stack on Rayleigh streaming cells investigated by laser Doppler velocimetry for application to thermoacoustic devices (L).
    Moreau S; Bailliet H; Valière JC
    J Acoust Soc Am; 2009 Jun; 125(6):3514-7. PubMed ID: 19507931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine.
    Ramadan IA; Bailliet H; Valière JC
    J Acoust Soc Am; 2018 Jan; 143(1):361. PubMed ID: 29390757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of acoustic streaming in a closed-loop traveling wave resonator using laser Doppler velocimetry.
    Desjouy C; Penelet G; Lotton P; Blondeau J
    J Acoust Soc Am; 2009 Nov; 126(5):2176-83. PubMed ID: 19894797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices.
    Mironov M; Gusev V; Auregan Y; Lotton P; Bruneau M; Piatakov P
    J Acoust Soc Am; 2002 Aug; 112(2):441-5. PubMed ID: 12186024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of inner and outer streaming vortices in a standing waveguide using laser doppler velocimetry.
    Moreau S; Bailliet H; Valière JC
    J Acoust Soc Am; 2008 Feb; 123(2):640-7. PubMed ID: 18247868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.
    Reyt I; Bailliet H; Valière JC
    J Acoust Soc Am; 2014 Jan; 135(1):27-37. PubMed ID: 24437742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.
    Daru V; Reyt I; Bailliet H; Weisman C; Baltean-Carlès D
    J Acoust Soc Am; 2017 Jan; 141(1):563. PubMed ID: 28147596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes.
    Berson A; Blanc-Benon P
    J Acoust Soc Am; 2007 Oct; 122(4):EL122-7. PubMed ID: 17902740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient unidirectional acoustic streaming in annular resonators.
    Amari M; Gusev V; Joly N
    Ultrasonics; 2004 Apr; 42(1-9):573-8. PubMed ID: 15047349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic streaming in closed thermoacoustic devices.
    Bailliet H; Gusev V; Raspet R; Hiller RA
    J Acoust Soc Am; 2001 Oct; 110(4):1808-21. PubMed ID: 11681362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic streaming in lithotripsy fields: preliminary observation using a particle image velocimetry method.
    Choi MJ; Doh DH; Hwang TG; Cho CH; Paeng DG; Rim GH; Coleman AJ
    Ultrasonics; 2006 Feb; 44(2):133-45. PubMed ID: 16376400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines.
    Penelet G; Gusev V; Lotton P; Bruneau M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016625. PubMed ID: 16090125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pattern of acropetal and basipetal cytoplasmic streaming velocities in Chara rhizoids and protonemata, and gravity effect on the pattern as measured by laser-Doppler-velocimetry.
    Ackers D; Buchen B; Hejnowicz Z; Sievers A
    Planta; 2000 Jun; 211(1):133-43. PubMed ID: 10923714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2017 Jun; 141(6):4418. PubMed ID: 28618831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Microscale Acoustic Streaming Driven by a Temperature-Gradient-Induced Nondissipative Acoustic Body Force.
    Qiu W; Joergensen JH; Corato E; Bruus H; Augustsson P
    Phys Rev Lett; 2021 Aug; 127(6):064501. PubMed ID: 34420350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The experimental studies of thermoacoustic cooler.
    Sakamoto S; Watanabe Y
    Ultrasonics; 2004 Apr; 42(1-9):53-6. PubMed ID: 15047261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous measurement of acoustic and streaming velocities in a standing wave using laser Doppler anemometry.
    Thompson MW; Atchley AA
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1828-38. PubMed ID: 15898628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.