These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19508059)

  • 1. Computing vibrational energy levels by using mappings to fully exploit the structure of a pruned product basis.
    Cooper J; Carrington T
    J Chem Phys; 2009 Jun; 130(21):214110. PubMed ID: 19508059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to choose one-dimensional basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the one-dimensional functions: energy levels of coupled systems with as many as 16 coordinates.
    Dawes R; Carrington T
    J Chem Phys; 2005 Apr; 122(13):134101. PubMed ID: 15847449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation.
    Dawes R; Carrington T
    J Chem Phys; 2006 Feb; 124(5):054102. PubMed ID: 16468846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-dimensional quantum calculations of vibrational spectra of six-atom molecules. I. Theory and numerical results.
    Yu HG
    J Chem Phys; 2004 Feb; 120(5):2270-84. PubMed ID: 15268366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger equation for C2H4.
    Avila G; Carrington T
    J Chem Phys; 2011 Aug; 135(6):064101. PubMed ID: 21842920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multidimensional discrete variable representation basis obtained by simultaneous diagonalization.
    Dawes R; Carrington T
    J Chem Phys; 2004 Jul; 121(2):726-36. PubMed ID: 15260599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D.
    Avila G; Carrington T
    J Chem Phys; 2011 Feb; 134(5):054126. PubMed ID: 21303111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonproduct quadrature grids for solving the vibrational Schrödinger equation.
    Avila G; Carrington T
    J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations.
    Mátyus E; Czakó G; Császár AG
    J Chem Phys; 2009 Apr; 130(13):134112. PubMed ID: 19355722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-normal Lanczos methods for quantum scattering.
    Khorasani RR; Dumont RS
    J Chem Phys; 2008 Jul; 129(3):034110. PubMed ID: 18647019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane.
    Wang XG; Carrington T
    J Chem Phys; 2004 Aug; 121(7):2937-54. PubMed ID: 15291604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method.
    Wodraszka R; Carrington T
    J Chem Phys; 2016 Jul; 145(4):044110. PubMed ID: 27475351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation.
    Mátyus E; Czakó G; Sutcliffe BT; Császár AG
    J Chem Phys; 2007 Aug; 127(8):084102. PubMed ID: 17764224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A discrete variable representation method for studying the rovibrational quantum dynamics of molecules with more than three atoms.
    Wang XG; Carrington T
    J Chem Phys; 2009 Mar; 130(9):094101. PubMed ID: 19275390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations.
    Czakó G; Furtenbacher T; Barletta P; Császár AG; Szalay V; Sutcliffe BT
    Phys Chem Chem Phys; 2007 Jul; 9(26):3407-15. PubMed ID: 17664964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
    Czakó G; Szalay V; Császár AG; Furtenbacher T
    J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative solutions with energy selected bases for highly excited vibrations of tetra-atomic molecules.
    Lee HS; Light JC
    J Chem Phys; 2004 Mar; 120(10):4626-37. PubMed ID: 15267322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic calculations of vibrational hyperpolarizabilities in the atomic orbital basis.
    Thorvaldsen AJ; Ruud K; Jaszuński M
    J Phys Chem A; 2008 Nov; 112(46):11942-50. PubMed ID: 18947217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic.
    Tremblay JC; Carrington T
    J Chem Phys; 2005 Jun; 122(24):244107. PubMed ID: 16035746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.