BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 19508185)

  • 1. Cold-adapted esterases and lipases: from fundamentals to application.
    Tutino ML; di Prisco G; Marino G; de Pascale D
    Protein Pept Lett; 2009; 16(10):1172-80. PubMed ID: 19508185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family.
    de Pascale D; Cusano AM; Autore F; Parrilli E; di Prisco G; Marino G; Tutino ML
    Extremophiles; 2008 May; 12(3):311-23. PubMed ID: 18437283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial carbohydrate esterases in cold adapted environments.
    Aurilia V; Parracino A; D'Auria S
    Gene; 2008 Mar; 410(2):234-40. PubMed ID: 18242884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipases: an overview.
    Casas-Godoy L; Duquesne S; Bordes F; Sandoval G; Marty A
    Methods Mol Biol; 2012; 861():3-30. PubMed ID: 22426709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptational properties and applications of cold-active lipases from psychrophilic bacteria.
    Maiangwa J; Ali MS; Salleh AB; Rahman RN; Shariff FM; Leow TC
    Extremophiles; 2015 Mar; 19(2):235-47. PubMed ID: 25472009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of cold-adapted enzymes as investigated by FT-IR spectroscopy and MD. The case of an esterase from Pseudoalteromonas haloplanktis.
    Aurilia V; Rioux-Dubé JF; Marabotti A; Pézolet M; D'Auria S
    J Phys Chem B; 2009 Jun; 113(22):7753-61. PubMed ID: 19435327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics of cold-adapted enzymes as investigated by phosphorescence spectroscopy and molecular dynamics studies. 2. The case of an esterase from Pseudoalteromonas haloplanktis.
    D'Auria S; Aurilia V; Marabotti A; Gonnelli M; Strambini G
    J Phys Chem B; 2009 Oct; 113(40):13171-8. PubMed ID: 19754077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The psychrophilic bacterium Pseudoalteromonas halosplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from gamma-proteobacteria and yeast.
    Aurilia V; Parracino A; Saviano M; Rossi M; D'Auria S
    Gene; 2007 Aug; 397(1-2):51-7. PubMed ID: 17543477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New extremophilic lipases and esterases from metagenomics.
    López-López O; Cerdán ME; González Siso MI
    Curr Protein Pept Sci; 2014; 15(5):445-55. PubMed ID: 24588890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold active microbial lipases: some hot issues and recent developments.
    Joseph B; Ramteke PW; Thomas G
    Biotechnol Adv; 2008; 26(5):457-70. PubMed ID: 18571355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of cold-active family VIII esterases from an arctic soil metagenome.
    Yu EY; Kwon MA; Lee M; Oh JY; Choi JE; Lee JY; Song BK; Hahm DH; Song JK
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):573-81. PubMed ID: 21318360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a cold-active and salt tolerant esterase identified by functional screening of Arctic metagenomic libraries.
    De Santi C; Altermark B; Pierechod MM; Ambrosino L; de Pascale D; Willassen NP
    BMC Biochem; 2016 Jan; 17():1. PubMed ID: 26782782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial lipolytic fusion enzymes: current state and future perspectives.
    Gudiukaite R; Gricajeva A
    World J Microbiol Biotechnol; 2017 Nov; 33(12):216. PubMed ID: 29181632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural features of a cold-adapted Alaskan bacterial lipase.
    Roy D; Sengupta S
    J Biomol Struct Dyn; 2007 Apr; 24(5):463-70. PubMed ID: 17313191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.
    Borrelli GM; Trono D
    Int J Mol Sci; 2015 Sep; 16(9):20774-840. PubMed ID: 26340621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27.
    Fuciños P; González R; Atanes E; Sestelo AB; Pérez-Guerra N; Pastrana L; Rúa ML
    Methods Mol Biol; 2012; 861():239-66. PubMed ID: 22426723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation.
    Boyineni J; Kim J; Kang BS; Lee C; Jang SH
    Biochim Biophys Acta; 2014 Jun; 1844(6):1076-82. PubMed ID: 24667115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipases and esterases: a review of their sequences, structure and evolution.
    Anthonsen HW; Baptista A; Drabløs F; Martel P; Petersen SB; Sebastião M; Vaz L
    Biotechnol Annu Rev; 1995; 1():315-71. PubMed ID: 9704093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization.
    Al Khudary R; Venkatachalam R; Katzer M; Elleuche S; Antranikian G
    Extremophiles; 2010 May; 14(3):273-85. PubMed ID: 20217440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential.
    De Santi C; Tedesco P; Ambrosino L; Altermark B; Willassen NP; de Pascale D
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3054-68. PubMed ID: 24488777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.