BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19508220)

  • 1. Gbetagamma-copurified lipid kinase impurity from Sf9 cells.
    Shymanets A; Ahmadian MR; Nürnberg B
    Protein Pept Lett; 2009; 16(9):1053-6. PubMed ID: 19508220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane translocation of P-Rex1 is mediated by G protein betagamma subunits and phosphoinositide 3-kinase.
    Barber MA; Donald S; Thelen S; Anderson KE; Thelen M; Welch HC
    J Biol Chem; 2007 Oct; 282(41):29967-76. PubMed ID: 17698854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dystrophin glycoprotein complex-associated Gbetagamma subunits activate phosphatidylinositol-3-kinase/Akt signaling in skeletal muscle in a laminin-dependent manner.
    Xiong Y; Zhou Y; Jarrett HW
    J Cell Physiol; 2009 May; 219(2):402-14. PubMed ID: 19117013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gbetagamma subunits stimulate p21-activated kinase 1 (PAK1) through activation of PI3-kinase and Akt but act independently of Rac1/Cdc42.
    Menard RE; Mattingly RR
    FEBS Lett; 2004 Jan; 556(1-3):187-92. PubMed ID: 14706848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of differential stability of G protein βγ dimers containing the γ11 subunit on functional activity at the M1 muscarinic receptor, A1 adenosine receptor, and phospholipase C-β.
    McIntire WE; MacCleery G; Murphree LJ; Kerchner KR; Linden J; Garrison JC
    Biochemistry; 2006 Sep; 45(38):11616-31. PubMed ID: 16981721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gbeta 5gamma 2 is a highly selective activator of phospholipid-dependent enzymes.
    Maier U; Babich A; Macrez N; Leopoldt D; Gierschik P; Illenberger D; Nurnberg B
    J Biol Chem; 2000 May; 275(18):13746-54. PubMed ID: 10788495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of G protein subunits from Sf9 insect cells using hexahistidine-tagged alpha and beta gamma subunits.
    Kozasa T
    Methods Mol Biol; 2004; 237():21-38. PubMed ID: 14501036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gβγ-dependent regulator of PI3Kγ enzymatic activity.
    Shymanets A; Prajwal ; Vadas O; Czupalla C; LoPiccolo J; Brenowitz M; Ghigo A; Hirsch E; Krause E; Wetzker R; Williams RL; Harteneck C; Nürnberg B
    Biochem J; 2015 Jul; 469(1):59-69. PubMed ID: 26173259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatostatin activates Ras and ERK1/2 via a G protein βγ-subunit-initiated pathway in thyroid cells.
    Rodríguez-Álvarez FJ; Jiménez-Mora E; Caballero M; Gallego B; Chiloeches A; Toro MJ
    Mol Cell Biochem; 2016 Jan; 411(1-2):253-60. PubMed ID: 26472731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of human phospholipase C-eta2 by Gbetagamma.
    Zhou Y; Sondek J; Harden TK
    Biochemistry; 2008 Apr; 47(15):4410-7. PubMed ID: 18361507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of non-catalytic subunits in gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma.
    Maier U; Babich A; Nürnberg B
    J Biol Chem; 1999 Oct; 274(41):29311-7. PubMed ID: 10506190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gbeta3 forms distinct dimers with specific Ggamma subunits and preferentially activates the beta3 isoform of phospholipase C.
    Poon LS; Chan AS; Wong YH
    Cell Signal; 2009 May; 21(5):737-44. PubMed ID: 19168127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G protein beta 5 subunit interactions with alpha subunits and effectors.
    Yoshikawa DM; Hatwar M; Smrcka AV
    Biochemistry; 2000 Sep; 39(37):11340-7. PubMed ID: 10985779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of nucleoside diphosphate kinase B with heterotrimeric G protein betagamma dimers: consequences on G protein activation and stability.
    Wieland T
    Naunyn Schmiedebergs Arch Pharmacol; 2007 Feb; 374(5-6):373-83. PubMed ID: 17200862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ric-8 enhances G protein betagamma-dependent signaling in response to betagamma-binding peptides in intact cells.
    Malik S; Ghosh M; Bonacci TM; Tall GG; Smrcka AV
    Mol Pharmacol; 2005 Jul; 68(1):129-36. PubMed ID: 15802611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of Gbeta is augmented by chronic morphine and enhances Gbetagamma stimulation of adenylyl cyclase activity.
    Chakrabarti S; Gintzler AR
    Brain Res Mol Brain Res; 2003 Nov; 119(2):144-51. PubMed ID: 14625081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taking the heart failure battle inside the cell: small molecule targeting of Gβγ subunits.
    Kamal FA; Smrcka AV; Blaxall BC
    J Mol Cell Cardiol; 2011 Oct; 51(4):462-7. PubMed ID: 21256851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assembly and large-scale purification of a GPCR - Gα fusion with Gβγ, and characterization of the active complex.
    Kumar A; Plückthun A
    PLoS One; 2019; 14(1):e0210131. PubMed ID: 30620756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G protein-coupled receptor internalization signaling is required for cardioprotection in ischemic preconditioning.
    Tong H; Rockman HA; Koch WJ; Steenbergen C; Murphy E
    Circ Res; 2004 Apr; 94(8):1133-41. PubMed ID: 15031261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein betagamma subunits.
    Krugmann S; Cooper MA; Williams DH; Hawkins PT; Stephens LR
    Biochem J; 2002 Mar; 362(Pt 3):725-31. PubMed ID: 11879201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.