These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19508283)

  • 1. Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome.
    Rowland SJ; Boocock MR; McPherson AL; Mouw KW; Rice PA; Stark WM
    Mol Microbiol; 2009 Oct; 74(2):282-98. PubMed ID: 19508283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for catalytic activation of a serine recombinase.
    Keenholtz RA; Rowland SJ; Boocock MR; Stark WM; Rice PA
    Structure; 2011 Jun; 19(6):799-809. PubMed ID: 21645851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architecture of a serine recombinase-DNA regulatory complex.
    Mouw KW; Rowland SJ; Gajjar MM; Boocock MR; Stark WM; Rice PA
    Mol Cell; 2008 Apr; 30(2):145-55. PubMed ID: 18439894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation.
    Burke ME; Arnold PH; He J; Wenwieser SV; Rowland SJ; Boocock MR; Stark WM
    Mol Microbiol; 2004 Feb; 51(4):937-48. PubMed ID: 14763971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Sin recombinase by accessory proteins.
    Rowland SJ; Boocock MR; Stark WM
    Mol Microbiol; 2005 Apr; 56(2):371-82. PubMed ID: 15813731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediates in serine recombinase-mediated site-specific recombination.
    Marshall Stark W; Boocock MR; Olorunniji FJ; Rowland SJ
    Biochem Soc Trans; 2011 Apr; 39(2):617-22. PubMed ID: 21428950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting.
    Rowland SJ; Stark WM; Boocock MR
    Mol Microbiol; 2002 May; 44(3):607-19. PubMed ID: 11994145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion.
    Haykinson MJ; Johnson LM; Soong J; Johnson RC
    Curr Biol; 1996 Feb; 6(2):163-77. PubMed ID: 8673463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling tetramer formation, subunit rotation and DNA ligation during Hin-catalyzed DNA inversion.
    Chang Y; Johnson RC
    Nucleic Acids Res; 2015 Jul; 43(13):6459-72. PubMed ID: 26056171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sin resolvase catalytic activity and oligomerization state are tightly coupled.
    Mouw KW; Steiner AM; Ghirlando R; Li NS; Rowland SJ; Boocock MR; Stark WM; Piccirilli JA; Rice PA
    J Mol Biol; 2010 Nov; 404(1):16-33. PubMed ID: 20868695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the Tn3 resolvase-crossover site synaptic complex.
    Nöllmann M; He J; Byron O; Stark WM
    Mol Cell; 2004 Oct; 16(1):127-37. PubMed ID: 15469828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a synaptic gammadelta resolvase tetramer covalently linked to two cleaved DNAs.
    Li W; Kamtekar S; Xiong Y; Sarkis GJ; Grindley ND; Steitz TA
    Science; 2005 Aug; 309(5738):1210-5. PubMed ID: 15994378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical shift mapping of gammadelta resolvase dimer and activated tetramer: mechanistic implications for DNA strand exchange.
    Gehman JD; Cocco MJ; Grindley ND
    Biochim Biophys Acta; 2008 Dec; 1784(12):2086-92. PubMed ID: 18840551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snapshots of a molecular swivel in action.
    Trejo CS; Rock RS; Stark WM; Boocock MR; Rice PA
    Nucleic Acids Res; 2018 Jun; 46(10):5286-5296. PubMed ID: 29315406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of conserved tryptophan residues at the dimer interface of Staphylococcus aureus nitric oxide synthase.
    Lustig DB; Kempt C; Alam S; Clancy J; Yee J; Rafferty SP
    Arch Biochem Biophys; 2011 Feb; 506(2):165-72. PubMed ID: 21147059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A symmetrical tetramer for S. aureus pyruvate carboxylase in complex with coenzyme A.
    Yu LP; Xiang S; Lasso G; Gil D; Valle M; Tong L
    Structure; 2009 Jun; 17(6):823-32. PubMed ID: 19523900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-protein interactions directing resolvase site-specific recombination: a structure-function analysis.
    Hughes RE; Rice PA; Steitz TA; Grindley ND
    EMBO J; 1993 Apr; 12(4):1447-58. PubMed ID: 8385604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase at 2.7 A resolution.
    Sanderson MR; Freemont PS; Rice PA; Goldman A; Hatfull GF; Grindley ND; Steitz TA
    Cell; 1990 Dec; 63(6):1323-9. PubMed ID: 2175678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA bending in the Sin recombination synapse: functional replacement of HU by IHF.
    Rowland SJ; Boocock MR; Stark WM
    Mol Microbiol; 2006 Mar; 59(6):1730-43. PubMed ID: 16553879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of an intermediate of rotating dimers within the synaptic tetramer of the G-segment invertase.
    Ritacco CJ; Kamtekar S; Wang J; Steitz TA
    Nucleic Acids Res; 2013 Feb; 41(4):2673-82. PubMed ID: 23275567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.