BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19508693)

  • 1. Role of the basal ganglia in switching a planned response.
    Cameron IG; Coe BC; Watanabe M; Stroman PW; Munoz DP
    Eur J Neurosci; 2009 Jun; 29(12):2413-25. PubMed ID: 19508693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Executive impairment in Parkinson's disease: response automaticity and task switching.
    Cameron IG; Watanabe M; Pari G; Munoz DP
    Neuropsychologia; 2010 Jun; 48(7):1948-57. PubMed ID: 20303998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades.
    Brown JW; Bullock D; Grossberg S
    Neural Netw; 2004 May; 17(4):471-510. PubMed ID: 15109680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERP indices of persisting and current inhibitory control: a study of saccadic task switching.
    Mueller SC; Swainson R; Jackson GM
    Neuroimage; 2009 Mar; 45(1):191-7. PubMed ID: 19100841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefrontal cortex is involved in internal decision of forthcoming saccades.
    Milea D; Lobel E; Lehéricy S; Leboucher P; Pochon JB; Pierrot-Deseilligny C; Berthoz A
    Neuroreport; 2007 Aug; 18(12):1221-4. PubMed ID: 17632271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of conflict resolution between automatic and volitional actions by basal ganglia.
    Watanabe M; Munoz DP
    Eur J Neurosci; 2009 Dec; 30(11):2165-76. PubMed ID: 20128852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
    Brown MR; Goltz HC; Vilis T; Ford KA; Everling S
    Neuroimage; 2006 Nov; 33(2):644-59. PubMed ID: 16949303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposing the neural correlates of antisaccade eye movements using event-related FMRI.
    Ettinger U; Ffytche DH; Kumari V; Kathmann N; Reuter B; Zelaya F; Williams SC
    Cereb Cortex; 2008 May; 18(5):1148-59. PubMed ID: 17728263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.
    Cutini S; Scatturin P; Menon E; Bisiacchi PS; Gamberini L; Zorzi M; Dell'Acqua R
    Neuroimage; 2008 Aug; 42(2):945-55. PubMed ID: 18586525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical mechanisms of saccade generation from execution to decision.
    Milea D; Lobel E; Lehéricy S; Pierrot-Deseilligny C; Berthoz A
    Ann N Y Acad Sci; 2005 Apr; 1039():232-8. PubMed ID: 15826977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striatal activity during intentional switching depends on pattern stability.
    De Luca C; Jantzen KJ; Comani S; Bertollo M; Kelso JA
    J Neurosci; 2010 Mar; 30(9):3167-74. PubMed ID: 20203176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of switching between leftward and rightward pro- and antisaccades.
    Reuter B; Philipp AM; Koch I; Kathmann N
    Biol Psychol; 2006 Apr; 72(1):88-95. PubMed ID: 16216407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperfrontality in patients with schizophrenia during saccade and antisaccade tasks: a study with fMRI.
    Fukumoto-Motoshita M; Matsuura M; Ohkubo T; Ohkubo H; Kanaka N; Matsushima E; Taira M; Kojima T; Matsuda T
    Psychiatry Clin Neurosci; 2009 Apr; 63(2):209-17. PubMed ID: 19335390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BOLD fMRI activation for anti-saccades in nonhuman primates.
    Ford KA; Gati JS; Menon RS; Everling S
    Neuroimage; 2009 Apr; 45(2):470-6. PubMed ID: 19138749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age equivalence in switch costs for prosaccade and antisaccade tasks.
    Bojko A; Kramer AF; Peterson MS
    Psychol Aging; 2004 Mar; 19(1):226-34. PubMed ID: 15065948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically Organized Medial Frontal Cortex-Basal Ganglia Loops Selectively Control Task- and Response-Selection.
    Korb FM; Jiang J; King JA; Egner T
    J Neurosci; 2017 Aug; 37(33):7893-7905. PubMed ID: 28716966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus.
    Yoshida A; Tanaka M
    Cereb Cortex; 2009 Jan; 19(1):206-17. PubMed ID: 18477689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional and structural investigation of the human fronto-basal volitional saccade network.
    Neggers SF; Diepen RM; Zandbelt BB; Vink M; Mandl RC; Gutteling TP
    PLoS One; 2012; 7(1):e29517. PubMed ID: 22235303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks.
    Lo CC; Wang XJ
    Nat Neurosci; 2006 Jul; 9(7):956-63. PubMed ID: 16767089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.