BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19508882)

  • 1. Life-table calculations of excess risk for incidence versus mortality: ethylene oxide case study.
    Sielken RL; Valdez-Flores C
    Regul Toxicol Pharmacol; 2009 Oct; 55(1):82-9. PubMed ID: 19508882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating excess risk with age-dependent adjustment factors and cumulative doses: ethylene oxide case study.
    Sielken RL; Flores CV
    Regul Toxicol Pharmacol; 2009 Oct; 55(1):76-81. PubMed ID: 19508881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative cancer risk assessment for ethylene oxide inhalation in occupational settings.
    Valdez-Flores C; Sielken RL; Teta MJ
    Arch Toxicol; 2011 Oct; 85(10):1189-93. PubMed ID: 21347664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative cancer risk assessment based on NIOSH and UCC epidemiological data for workers exposed to ethylene oxide.
    Valdez-Flores C; Sielken RL; Teta MJ
    Regul Toxicol Pharmacol; 2010 Apr; 56(3):312-20. PubMed ID: 19840826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches to cancer assessment in EPA's Integrated Risk Information System.
    Gehlhaus MW; Gift JS; Hogan KA; Kopylev L; Schlosser PM; Kadry AR
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):170-80. PubMed ID: 21034767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method for quantitative risk assessment of non-threshold carcinogens based on the dose descriptor T25.
    Sanner T; Dybing E; Willems MI; Kroese ED
    Pharmacol Toxicol; 2001 Jun; 88(6):331-41. PubMed ID: 11453374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.
    Brunekreef B; Beelen R; Hoek G; Schouten L; Bausch-Goldbohm S; Fischer P; Armstrong B; Hughes E; Jerrett M; van den Brandt P
    Res Rep Health Eff Inst; 2009 Mar; (139):5-71; discussion 73-89. PubMed ID: 19554969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A simple method for risk assessment and its application to 1,3-butadiene].
    Zocchetti C; Pesatori AC; Bertazzi PA
    Med Lav; 2004; 95(5):392-409. PubMed ID: 15595202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998.
    Steenland K; Stayner L; Deddens J
    Occup Environ Med; 2004 Jan; 61(1):2-7. PubMed ID: 14691266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure of hematopoietic stem cells to ethylene oxide during processing represents a potential carcinogenic risk for transplant recipients.
    Butterworth BE; Chapman JR
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):149-53. PubMed ID: 17761374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An environmental fate, exposure and risk assessment of ethylene oxide from diffuse emissions.
    Staples CA; Gulledge W
    Chemosphere; 2006 Oct; 65(4):691-8. PubMed ID: 16516948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is inhalation exposure to formaldehyde a biologically plausible cause of lymphohematopoietic malignancies?
    Pyatt D; Natelson E; Golden R
    Regul Toxicol Pharmacol; 2008 Jun; 51(1):119-33. PubMed ID: 18440686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-response implications of the University of Alabama study of lymphohematopoietic cancer among workers exposed to 1,3-butadiene and styrene in the synthetic rubber industry.
    Sielken RL; Valdez-Flores C
    Chem Biol Interact; 2001 Jun; 135-136():637-51. PubMed ID: 11397418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.
    Krewski D; Jerrett M; Burnett RT; Ma R; Hughes E; Shi Y; Turner MC; Pope CA; Thurston G; Calle EE; Thun MJ; Beckerman B; DeLuca P; Finkelstein N; Ito K; Moore DK; Newbold KB; Ramsay T; Ross Z; Shin H; Tempalski B
    Res Rep Health Eff Inst; 2009 May; (140):5-114; discussion 115-36. PubMed ID: 19627030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occupational exposure to ethylene oxide and risk of lymphoma.
    Kiran S; Cocco P; Mannetje A; Satta G; D'Andrea I; Becker N; de Sanjosé S; Foretova L; Staines A; Kleefeld S; Maynadié M; Nieters A; Brennan P; Boffetta P
    Epidemiology; 2010 Nov; 21(6):905-10. PubMed ID: 20811284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Issues in assessing the carcinogenic hazards of ethylene oxide.
    Austin SG; Sielken RL
    J Occup Med; 1988 Mar; 30(3):236-45. PubMed ID: 3283301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of modeled benzene exposure and dose estimates published in the Chinese-National Cancer Institute collaborative epidemiology studies.
    Budinsky RA; DeMott RP; Wernke MJ; Schell JD
    Regul Toxicol Pharmacol; 1999 Dec; 30(3):244-58. PubMed ID: 10620474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure-response analysis of cancer mortality in a cohort of workers exposed to ethylene oxide.
    Stayner L; Steenland K; Greife A; Hornung R; Hayes RB; Nowlin S; Morawetz J; Ringenburg V; Elliot L; Halperin W
    Am J Epidemiol; 1993 Nov; 138(10):787-98. PubMed ID: 8237967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer risk assessment for 1,3-butadiene: dose-response modeling from an epidemiological perspective.
    Sielken RL; Valdez-Flores C; Gargas ML; Kirman CR; Teta MJ; Delzell E
    Chem Biol Interact; 2007 Mar; 166(1-3):140-9. PubMed ID: 16876150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.