These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 19508905)
1. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Villanueva I; Weigel CA; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2832-46. PubMed ID: 19508905 [TBL] [Abstract][Full Text] [Related]
2. Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate. Villanueva I; Gladem SK; Kessler J; Bryant SJ Matrix Biol; 2010 Jan; 29(1):51-62. PubMed ID: 19720146 [TBL] [Abstract][Full Text] [Related]
3. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. Kisiday JD; Jin M; DiMicco MA; Kurz B; Grodzinsky AJ J Biomech; 2004 May; 37(5):595-604. PubMed ID: 15046988 [TBL] [Abstract][Full Text] [Related]
4. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Nicodemus GD; Bryant SJ Osteoarthritis Cartilage; 2010 Jan; 18(1):126-37. PubMed ID: 19748607 [TBL] [Abstract][Full Text] [Related]
5. The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation. Nicodemus GD; Bryant SJ J Biomech; 2008; 41(7):1528-36. PubMed ID: 18417139 [TBL] [Abstract][Full Text] [Related]
6. Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering. Bryant SJ; Nicodemus GD; Villanueva I Pharm Res; 2008 Oct; 25(10):2379-86. PubMed ID: 18509600 [TBL] [Abstract][Full Text] [Related]
7. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities. Villanueva I; Hauschulz DS; Mejic D; Bryant SJ Osteoarthritis Cartilage; 2008 Aug; 16(8):909-18. PubMed ID: 18203631 [TBL] [Abstract][Full Text] [Related]
8. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Zhang J; Mujeeb A; Du Y; Lin J; Ge Z Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Nebelung S; Gavenis K; Lüring C; Zhou B; Mueller-Rath R; Stoffel M; Tingart M; Rath B Ann Anat; 2012 Jul; 194(4):351-8. PubMed ID: 22429869 [TBL] [Abstract][Full Text] [Related]
11. RGD-dependent integrins are mechanotransducers in dynamically compressed tissue-engineered cartilage constructs. Kock LM; Schulz RM; van Donkelaar CC; Thümmler CB; Bader A; Ito K J Biomech; 2009 Sep; 42(13):2177-82. PubMed ID: 19656515 [TBL] [Abstract][Full Text] [Related]
12. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Bryant SJ; Chowdhury TT; Lee DA; Bader DL; Anseth KS Ann Biomed Eng; 2004 Mar; 32(3):407-17. PubMed ID: 15095815 [TBL] [Abstract][Full Text] [Related]
13. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393 [TBL] [Abstract][Full Text] [Related]
14. The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels. Farnsworth N; Bensard C; Bryant SJ Osteoarthritis Cartilage; 2012 Nov; 20(11):1326-35. PubMed ID: 22796510 [TBL] [Abstract][Full Text] [Related]
15. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young's modulus gradient. Callahan LA; Ganios AM; Childers EP; Weiner SD; Becker ML Acta Biomater; 2013 Apr; 9(4):6095-104. PubMed ID: 23291491 [TBL] [Abstract][Full Text] [Related]
16. Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model. Owida HA; Rutter AV; Cinque G; Kuiper NJ; Sulé-Suso J; Yang Y Analyst; 2018 Dec; 143(24):5979-5986. PubMed ID: 30310903 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of biomimetic matrix molecules in PEG hydrogels enhances matrix deposition and reduces load-induced loss of chondrocyte-secreted matrix. Roberts JJ; Nicodemus GD; Giunta S; Bryant SJ J Biomed Mater Res A; 2011 Jun; 97(3):281-91. PubMed ID: 21442729 [TBL] [Abstract][Full Text] [Related]
18. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907 [TBL] [Abstract][Full Text] [Related]
19. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading. Kim E; Guilak F; Haider MA J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538 [TBL] [Abstract][Full Text] [Related]
20. The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD-modified poly(ethylene glycol) hydrogels. Steinmetz NJ; Bryant SJ Acta Biomater; 2011 Nov; 7(11):3829-40. PubMed ID: 21742067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]