BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19509306)

  • 1. Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways.
    Liu H; Wang P; Song W; Sun X
    FASEB J; 2009 Oct; 23(10):3383-92. PubMed ID: 19509306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Rcan1-1L inhibits hypoxia-induced cell apoptosis through induction of mitophagy.
    Sun L; Hao Y; An R; Li H; Xi C; Shen G
    Mol Cells; 2014 Nov; 37(11):785-94. PubMed ID: 25377251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation.
    Valdor R; Mocholi E; Botbol Y; Guerrero-Ros I; Chandra D; Koga H; Gravekamp C; Cuervo AM; Macian F
    Nat Immunol; 2014 Nov; 15(11):1046-54. PubMed ID: 25263126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fine-tuning of proteolytic pathways in Alzheimer's disease.
    Cecarini V; Bonfili L; Cuccioloni M; Mozzicafreddo M; Angeletti M; Keller JN; Eleuteri AM
    Cell Mol Life Sci; 2016 Sep; 73(18):3433-51. PubMed ID: 27120560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate.
    Carrettiero DC; Almeida MC; Longhini AP; Rauch JN; Han D; Zhang X; Najafi S; Gestwicki JE; Kosik KS
    Nat Commun; 2022 Jun; 13(1):3074. PubMed ID: 35654899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Protein Degradation via Lysosomes.
    Paudel RR; Lu D; Roy Chowdhury S; Monroy EY; Wang J
    Biochemistry; 2023 Feb; 62(3):564-579. PubMed ID: 36130224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal modeling of human neuronal aging reveals the contribution of the RCAN1-TFEB pathway to Huntington's disease neurodegeneration.
    Lee SW; Oh YM; Victor MB; Yang Y; Chen S; Strunilin I; Dahiya S; Dolle RE; Pak SC; Silverman GA; Perlmutter DH; Yoo AS
    Nat Aging; 2024 Jan; 4(1):95-109. PubMed ID: 38066314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of
    Li Y; Costiniti V; Souza Bomfim GH; Neginskaya M; Son GY; Rothermel B; Pavlov E; Lacruz RS
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal modeling of human neuronal aging identifies RCAN1-TFEB pathway contributing to neurodegeneration of Huntington's disease.
    Lee SW; Oh YM; Victor MB; Strunilin I; Chen S; Dahiya S; Dolle RE; Pak SC; Silverman GA; Perlmutter DH; Yoo AS
    Res Sq; 2023 May; ():. PubMed ID: 37214956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino Acid-Starved Cancer Cells Utilize Macropinocytosis and Ubiquitin-Proteasome System for Nutrient Acquisition.
    Wang T; Zhang Y; Liu Y; Huang Y; Wang W
    Adv Sci (Weinh); 2024 Jan; 11(1):e2304791. PubMed ID: 37983609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RCAN1-Calcineurin Axis and the Set-Point for Myocardial Damage During Ischemia-Reperfusion.
    Corbalan JJ; Kitsis RN
    Circ Res; 2018 Mar; 122(6):796-798. PubMed ID: 29700078
    [No Abstract]   [Full Text] [Related]  

  • 12. Integrated control of protein degradation in C. elegans muscle.
    Lehmann S; Shephard F; Jacobson LA; Szewczyk NJ
    Worm; 2012 Jul; 1(3):141-50. PubMed ID: 23457662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Author Correction: Feedback inhibition of cAMP effector signaling by a chaperone-assisted ubiquitin system.
    Rinaldi L; Donne RD; Catalanotti B; Torres-Quesada O; Enzler F; Moraca F; Nisticò R; Chiuso F; Piccinin S; Bachmann V; Lindner HH; Garbi C; Scorziello A; Russo NA; Synofzik M; Stelzl U; Annunziato L; Stefan E; Feliciello A
    Nat Commun; 2024 May; 15(1):4565. PubMed ID: 38811561
    [No Abstract]   [Full Text] [Related]  

  • 14. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission.
    Zhou J; Li G; Zheng Y; Shen HM; Hu X; Ming QL; Huang C; Li P; Gao N
    Autophagy; 2015; 11(8):1259-79. PubMed ID: 26114658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperone-mediated autophagy: roles in neuroprotection.
    Cai Z; Zeng W; Tao K; E Z; Wang B; Yang Q
    Neurosci Bull; 2015 Aug; 31(4):452-8. PubMed ID: 26206599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coming of age of chaperone-mediated autophagy.
    Kaushik S; Cuervo AM
    Nat Rev Mol Cell Biol; 2018 Jun; 19(6):365-381. PubMed ID: 29626215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of LRRK2 with chaperone-mediated autophagy.
    Orenstein SJ; Kuo SH; Tasset I; Arias E; Koga H; Fernandez-Carasa I; Cortes E; Honig LS; Dauer W; Consiglio A; Raya A; Sulzer D; Cuervo AM
    Nat Neurosci; 2013 Apr; 16(4):394-406. PubMed ID: 23455607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysosomal targetomics of
    Endicott SJ; Monovich AC; Huang EL; Henry EI; Boynton DN; Beckmann LJ; MacCoss MJ; Miller RA
    Autophagy; 2022 Jul; 18(7):1551-1571. PubMed ID: 34704522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ménage à trois of autophagy, lipid droplets and liver disease.
    Filali-Mouncef Y; Hunter C; Roccio F; Zagkou S; Dupont N; Primard C; Proikas-Cezanne T; Reggiori F
    Autophagy; 2022 Jan; 18(1):50-72. PubMed ID: 33794741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Chaperone-Mediated Autophagy in Cell Cycle Control and Its Implications in Cancer.
    Andrade-Tomaz M; de Souza I; Rocha CRR; Gomes LR
    Cells; 2020 Sep; 9(9):. PubMed ID: 32971884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.