These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19509309)

  • 1. Using DNA mechanics to predict in vitro nucleosome positions and formation energies.
    Morozov AV; Fortney K; Gaykalova DA; Studitsky VM; Widom J; Siggia ED
    Nucleic Acids Res; 2009 Aug; 37(14):4707-22. PubMed ID: 19509309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro.
    Cui F; Zhurkin VB
    J Biomol Struct Dyn; 2010 Jun; 27(6):821-41. PubMed ID: 20232936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal.
    Widlund HR; Vitolo JM; Thiriet C; Hayes JJ
    Biochemistry; 2000 Apr; 39(13):3835-41. PubMed ID: 10736184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy.
    van der Heijden T; van Vugt JJ; Logie C; van Noort J
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):E2514-22. PubMed ID: 22908247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanics behind DNA sequence-dependent properties of the nucleosome.
    Chua EY; Vasudevan D; Davey GE; Wu B; Davey CA
    Nucleic Acids Res; 2012 Jul; 40(13):6338-52. PubMed ID: 22453276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deformation energy-based model for predicting nucleosome dyads and occupancy.
    Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L
    Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of DNA in the nucleosome core.
    Richmond TJ; Davey CA
    Nature; 2003 May; 423(6936):145-50. PubMed ID: 12736678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution.
    Davey CA; Sargent DF; Luger K; Maeder AW; Richmond TJ
    J Mol Biol; 2002 Jun; 319(5):1097-113. PubMed ID: 12079350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic studies and computational predictions of nucleosome positions and formation energies.
    Tolkunov D; Morozov AV
    Adv Protein Chem Struct Biol; 2010; 79():1-57. PubMed ID: 20621280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetries in the nucleosome core particle at 2.5 A resolution.
    Harp JM; Hanson BL; Timm DE; Bunick GJ
    Acta Crystallogr D Biol Crystallogr; 2000 Dec; 56(Pt 12):1513-34. PubMed ID: 11092917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants.
    Ramaswamy A; Bahar I; Ioshikhes I
    Proteins; 2005 Feb; 58(3):683-96. PubMed ID: 15624215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twists and turns of the nucleosome: tails without ends.
    Dutnall RN; Ramakrishnan V
    Structure; 1997 Oct; 5(10):1255-9. PubMed ID: 9351811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific local histone-DNA sequence contacts facilitate high-affinity, non-cooperative nucleosome binding of both adf-1 and GAGA factor.
    Gao J; Benyajati C
    Nucleic Acids Res; 1998 Dec; 26(23):5394-401. PubMed ID: 9826764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA nanomechanics in the nucleosome.
    Becker NB; Everaers R
    Structure; 2009 Apr; 17(4):579-89. PubMed ID: 19368891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays.
    Solis FJ; Bash R; Yodh J; Lindsay SM; Lohr D
    Biophys J; 2004 Nov; 87(5):3372-87. PubMed ID: 15347582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of nucleosomal DNA.
    Muthurajan UM; Park YJ; Edayathumangalam RS; Suto RK; Chakravarthy S; Dyer PN; Luger K
    Biopolymers; 2003 Apr; 68(4):547-56. PubMed ID: 12666179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA shape dominates sequence affinity in nucleosome formation.
    Freeman GS; Lequieu JP; Hinckley DM; Whitmer JK; de Pablo JJ
    Phys Rev Lett; 2014 Oct; 113(16):168101. PubMed ID: 25361282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome binding by the pioneer transcription factor OCT4.
    Echigoya K; Koyama M; Negishi L; Takizawa Y; Mizukami Y; Shimabayashi H; Kuroda A; Kurumizaka H
    Sci Rep; 2020 Jul; 10(1):11832. PubMed ID: 32678275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
    Garcia-Saez I; Menoni H; Boopathi R; Shukla MS; Soueidan L; Noirclerc-Savoye M; Le Roy A; Skoufias DA; Bednar J; Hamiche A; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2018 Dec; 72(5):902-915.e7. PubMed ID: 30392928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.