These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 19509448)

  • 1. QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K.
    Bettac A; Koeble J; Winkler K; Uder B; Maier M; Feltz A
    Nanotechnology; 2009 Jul; 20(26):264009. PubMed ID: 19509448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy.
    Albers BJ; Liebmann M; Schwendemann TC; Baykara MZ; Heyde M; Salmeron M; Altman EI; Schwarz UD
    Rev Sci Instrum; 2008 Mar; 79(3):033704. PubMed ID: 18377012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the charge state of an adatom with noncontact atomic force microscopy.
    Gross L; Mohn F; Liljeroth P; Repp J; Giessibl FJ; Meyer G
    Science; 2009 Jun; 324(5933):1428-31. PubMed ID: 19520956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant.
    Labidi H; Kupsta M; Huff T; Salomons M; Vick D; Taucer M; Pitters J; Wolkow RA
    Ultramicroscopy; 2015 Nov; 158():33-7. PubMed ID: 26117434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes.
    Wutscher E; Giessibl FJ
    Rev Sci Instrum; 2011 Sep; 82(9):093703. PubMed ID: 21974590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique.
    Majzik Z; Setvín M; Bettac A; Feltz A; Cháb V; Jelínek P
    Beilstein J Nanotechnol; 2012; 3():249-59. PubMed ID: 22496998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation and characterization of a quartz tuning fork based probe consisted of discrete resonators for dynamic mode atomic force microscopy.
    Akiyama T; de Rooij NF; Staufer U; Detterbeck M; Braendlin D; Waldmeier S; Scheidiger M
    Rev Sci Instrum; 2010 Jun; 81(6):063706. PubMed ID: 20590245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.
    Morawski I; Voigtländer B
    Rev Sci Instrum; 2010 Mar; 81(3):033703. PubMed ID: 20370181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.
    Dede M; Urkmen K; Girişen O; Atabak M; Oral A; Farrer I; Ritchie D
    J Nanosci Nanotechnol; 2008 Feb; 8(2):619-22. PubMed ID: 18464380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator.
    An T; Nishio T; Eguchi T; Ono M; Nomura A; Akiyama K; Hasegawa Y
    Rev Sci Instrum; 2008 Mar; 79(3):033703. PubMed ID: 18377011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements.
    Nony L; Clair S; Uehli D; Herrero A; Themlin JM; Campos A; Para F; Pioda A; Loppacher C
    Beilstein J Nanotechnol; 2024; 15():580-602. PubMed ID: 38887532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective stiffness of qPlus sensor and quartz tuning fork.
    Kim J; Won D; Sung B; An S; Jhe W
    Ultramicroscopy; 2014 Jun; 141():56-62. PubMed ID: 24727200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal AFM: a thermopile case study.
    Fonseca L; Pérez-Murano F; Calaza C; Rubio R; Santander J; Figueras E; Gràcia I; Cané C; Moreno M; Marco S
    Ultramicroscopy; 2004 Nov; 101(2-4):153-9. PubMed ID: 15450661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy.
    Ooe H; Fujii M; Tomitori M; Arai T
    Rev Sci Instrum; 2016 Feb; 87(2):023702. PubMed ID: 26931855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Ultramicroscopy; 2011 Feb; 111(3):186-90. PubMed ID: 21333855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens.
    Rhinow D; Vonck J; Schranz M; Beyer A; Gölzhäuser A; Hampp N
    Phys Chem Chem Phys; 2010 May; 12(17):4345-50. PubMed ID: 20407705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low temperature scanning tunneling microscope for electronic and force spectroscopy.
    Smit RH; Grande R; Lasanta B; Riquelme JJ; Rubio-Bollinger G; Agraït N
    Rev Sci Instrum; 2007 Nov; 78(11):113705. PubMed ID: 18052478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy imaging using a tip-on-chip: opening the door to integrated near field nanotools.
    Hayton J; Polesel-Maris J; Demadrille R; Brun M; Thoyer F; Lubin C; Cousty J; Grévin B
    Rev Sci Instrum; 2010 Sep; 81(9):093707. PubMed ID: 20886987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.