These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1951000)

  • 1. Acute effects of intravenous propafenone on the internal ventricular defibrillation threshold in the anesthetized dog.
    Peters W; Gang ES; Okazaki H; Solingen S; Kobayashi Y; Karagueuzian HS; Mandel WJ
    Am Heart J; 1991 Nov; 122(5):1355-60. PubMed ID: 1951000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravenous propafenone reduces energy requirements for defibrillation in pigs.
    Montenero AS; Bombardieri G; Barilaro C; Di Francesco P; Santarelli P; Calvi V; Schiavello R; Alessandrini F; Pisanò E; Salsano M
    Cardiologia; 1990 Apr; 35(4):291-4. PubMed ID: 2123131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of acute and prolonged administration of propafenone on internal defibrillation in the pig.
    Natale A; Montenero AS; Bombardieri G; Barilaro C; Kim YH; Klein GJ; Jones DL
    Am Heart J; 1992 Jul; 124(1):104-9. PubMed ID: 1615791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of flecainide on defibrillation thresholds in the anesthetized dog.
    Hernandez R; Mann DE; Breckinridge S; Williams GR; Reiter MJ
    J Am Coll Cardiol; 1989 Sep; 14(3):777-81. PubMed ID: 2504799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oral propafenone on defibrillation and pacing thresholds in patients receiving implantable cardioverter-defibrillators. Propafenone Defibrillation Threshold Investigators.
    Stevens SK; Haffajee CI; Naccarelli GV; Schwartz KM; Luceri RM; Packer DL; Rubin AM; Kowey PR
    J Am Coll Cardiol; 1996 Aug; 28(2):418-22. PubMed ID: 8800119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Success rate versus defibrillation energy: temporal profile and the most efficient defibrillation threshold.
    Murakawa Y; Gliner BE; Thakor NV
    Am Heart J; 1989 Sep; 118(3):451-8. PubMed ID: 2773769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of normothermic and hypothermic cardiopulmonary bypass on defibrillation energy requirements and transmyocardial impedance. Implications for implantable cardioverter-defibrillator implantation.
    Martin D; Garcia J; Valeri CR; Khuri SF
    J Thorac Cardiovasc Surg; 1995 May; 109(5):981-8. PubMed ID: 7739260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of an unsuccessful subthreshold shock on the energy requirement for the subsequent defibrillation.
    Murakawa Y; Gliner BE; Shankar B; Thakor NV
    Am Heart J; 1989 May; 117(5):1065-9. PubMed ID: 2711966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DL and D sotalol decrease defibrillation energy requirements.
    Wang M; Dorian P
    Pacing Clin Electrophysiol; 1989 Sep; 12(9):1522-9. PubMed ID: 2476781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between successful defibrillation and delivered energy in open-chest dogs: reappraisal of the "defibrillation threshold" concept.
    Davy JM; Fain ES; Dorian P; Winkle RA
    Am Heart J; 1987 Jan; 113(1):77-84. PubMed ID: 3799444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Success of chronic defibrillation and the role of antiarrhythmic drugs with the automatic implantable cardioverter/defibrillator.
    Guarnieri T; Levine JH; Veltri EP; Griffith LS; Watkins L; Juanteguy J; Mower MM; Mirowski M
    Am J Cardiol; 1987 Nov; 60(13):1061-4. PubMed ID: 3673907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lidocaine causes a reversible, concentration-dependent increase in defibrillation energy requirements.
    Dorian P; Fain ES; Davy JM; Winkle RA
    J Am Coll Cardiol; 1986 Aug; 8(2):327-32. PubMed ID: 3734254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of quinidine and bretylium on defibrillation energy requirements.
    Dorian P; Fain ES; Davy JM; Winkle RA
    Am Heart J; 1986 Jul; 112(1):19-25. PubMed ID: 3728282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved internal defibrillation efficacy with a biphasic waveform.
    Fain ES; Sweeney MB; Franz MR
    Am Heart J; 1989 Feb; 117(2):358-64. PubMed ID: 2916410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acute intravenous and chronic oral amiodarone on defibrillation energy requirements.
    Fain ES; Lee JT; Winkle RA
    Am Heart J; 1987 Jul; 114(1 Pt 1):8-17. PubMed ID: 3604876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tedisamil increases coherence during ventricular fibrillation and decreases defibrillation energy requirements.
    Dorian P; Newman D
    Cardiovasc Res; 1997 Feb; 33(2):485-94. PubMed ID: 9074714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pronounced increase in defibrillation threshold associated with pacing-induced cardiomyopathy in the dog.
    Lucy SD; Jones DL; Klein GJ
    Am Heart J; 1994 Feb; 127(2):366-76. PubMed ID: 8296705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ventricular fibrillation and defibrillation on pacing threshold in the anesthetized dog.
    Reiter MJ; Lindenfeld J; Tyndal CM; Breckinridge S; Mann DE
    J Am Coll Cardiol; 1989 Jan; 13(1):180-4. PubMed ID: 2909565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of verapamil and Bay K 8644 on defibrillation energy requirements in dogs.
    Schräder R; Brooks M; Echt DS
    J Cardiovasc Pharmacol; 1992 Jun; 19(6):839-50. PubMed ID: 1376802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs. Sodium channel block and action potential prolongation.
    Echt DS; Black JN; Barbey JT; Coxe DR; Cato E
    Circulation; 1989 May; 79(5):1106-17. PubMed ID: 2469545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.