BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19512998)

  • 1. In vitro antifungal activity of the diterpenoid 7 alpha-hydroxy-8(17)-labden-15-oic acid and its derivatives against Botrytis cinerea.
    Mendoza L; Espinoza P; Urzua A; Vivanco M; Cotoras M
    Molecules; 2009 May; 14(6):1966-79. PubMed ID: 19512998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal activity against
    Echeverría J; González-Teuber M; Urzúa A
    Nat Prod Res; 2019 Aug; 33(16):2408-2412. PubMed ID: 29480018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3beta-hydroxy-kaurenoic acid.
    Cotoras M; Folch C; Mendoza L
    J Agric Food Chem; 2004 May; 52(10):2821-6. PubMed ID: 15137820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction.
    Echeverría J; Urzúa A; Sanhueza L; Wilkens M
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28644410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clerodane and labdane diterpenoids from Nuxia sphaerocephala.
    Mambu L; Grellier P; Florent L; Joyeau R; Ramanitrahasimbola D; Rasoanaivo P; Frappier F
    Phytochemistry; 2006 Mar; 67(5):444-51. PubMed ID: 16427101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitubercular diterpenoids from Vitex trifolia.
    Tiwari N; Thakur J; Saikia D; Gupta MM
    Phytomedicine; 2013 May; 20(7):605-10. PubMed ID: 23462211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial diterpenoids from Eupatorium glutinosum (Asteraceae).
    El-Seedi HR; Ohara T; Sata N; Nishiyama S
    J Ethnopharmacol; 2002 Jul; 81(2):293-6. PubMed ID: 12065166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Depigmenting-Antifungal Methylated Grindelane from Grindelia chiloensis.
    de Los A Mesurado M; Arias Cassará ML; Misico R; Bardón A; Ybarra MI; Cartagena E
    Chem Biodivers; 2017 May; 14(5):. PubMed ID: 28135782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sesquiterpenoids and diterpenoids from Chloranthus anhuiensis.
    Xu YJ; Tang CP; Tan MJ; Ke CQ; Wu T; Ye Y
    Chem Biodivers; 2010 Jan; 7(1):151-7. PubMed ID: 20087981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal effect of 405-nm light on Botrytis cinerea.
    Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S
    Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea.
    Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V
    Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial study of the resinous exudate and of diterpenoids isolated from Eupatorium salvia (Asteraceae).
    Urzua A; Caroli M; Vasquez L; Mendoza L; Wilkens M; Tojo E
    J Ethnopharmacol; 1998 Oct; 62(3):251-4. PubMed ID: 9849637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of linear Geranylphenols and their effect on mycelial growth of plant pathogen Botrytis cinerea.
    Espinoza L; Taborga L; Díaz K; Olea AF; Peña-Cortés H
    Molecules; 2014 Jan; 19(2):1512-26. PubMed ID: 24473210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester.
    Vicedo B; de la O Leyva M; Flors V; Finiti I; Del Amo G; Walters D; Real MD; García-Agustín P; González-Bosch C
    Arch Microbiol; 2006 Jan; 184(5):316-26. PubMed ID: 16261314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terpenes with antimicrobial activity from Cretan propolis.
    Popova MP; Chinou IB; Marekov IN; Bankova VS
    Phytochemistry; 2009 Jul; 70(10):1262-71. PubMed ID: 19698962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New and Antifungal Diterpenoids of Sunflower against Gray Mold.
    Zhao Y; Wang ZJ; Wang CB; Tan BY; Luo XD
    J Agric Food Chem; 2023 Nov; 71(44):16647-16656. PubMed ID: 37877578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.