These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Gotoh T; Noda H; Hong XY Heredity (Edinb); 2003 Sep; 91(3):208-16. PubMed ID: 12939620 [TBL] [Abstract][Full Text] [Related]
43. Mobile male-killer: similar Wolbachia strains kill males of divergent Drosophila hosts. Sheeley SL; McAllister BF Heredity (Edinb); 2009 Mar; 102(3):286-92. PubMed ID: 19142204 [TBL] [Abstract][Full Text] [Related]
44. How does infection with parthenogenesis-inducing Wolbachia reduce the fitness of Trichogramma? Tagami Y; Miura K; Stouthamer R J Invertebr Pathol; 2001 Nov; 78(4):267-71. PubMed ID: 12009809 [TBL] [Abstract][Full Text] [Related]
45. High-resolution melting technology: a new tool for studying the Wolbachia endosymbiont diversity in the field. Henri H; Mouton L Mol Ecol Resour; 2012 Jan; 12(1):75-81. PubMed ID: 21923674 [TBL] [Abstract][Full Text] [Related]
46. The effects of outbreeding on a parasitoid wasp fixed for infection with a parthenogenesis-inducing Wolbachia symbiont. Lindsey ARI; Stouthamer R Heredity (Edinb); 2017 Dec; 119(6):411-417. PubMed ID: 28902190 [TBL] [Abstract][Full Text] [Related]
47. Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains. Conte CA; Segura DF; Milla FH; Augustinos A; Cladera JL; Bourtzis K; Lanzavecchia SB BMC Microbiol; 2019 Dec; 19(Suppl 1):289. PubMed ID: 31870290 [TBL] [Abstract][Full Text] [Related]
48. Modelling suggests Wolbachia-induced cytoplasmic incompatibility in oak gall wasps with cyclical parthenogenesis. Taprogge M; Grath S J Evol Biol; 2024 Aug; 37(8):926-934. PubMed ID: 38869236 [TBL] [Abstract][Full Text] [Related]
49. Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium Cardinium. Kenyon SG; Hunter MS J Evol Biol; 2007 Mar; 20(2):707-16. PubMed ID: 17305836 [TBL] [Abstract][Full Text] [Related]
50. The mushroom habitat as an ecological arena for global exchange of Wolbachia. Stahlhut JK; Desjardins CA; Clark ME; Baldo L; Russell JA; Werren JH; Jaenike J Mol Ecol; 2010 May; 19(9):1940-52. PubMed ID: 20529071 [TBL] [Abstract][Full Text] [Related]
51. Molecular evidence for the endosymbiont Wolbachia in a non-filaroid nematode, Angiostrongylus cantonensis. Tsai KH; Huang CG; Wang LC; Yu YW; Wu WJ; Chen WJ J Biomed Sci; 2007 Sep; 14(5):607-15. PubMed ID: 17562224 [TBL] [Abstract][Full Text] [Related]
52. Polyploidy versus endosymbionts in obligately thelytokous thrips. Nguyen DT; Spooner-Hart RN; Riegler M BMC Evol Biol; 2015 Feb; 15():23. PubMed ID: 25880387 [TBL] [Abstract][Full Text] [Related]
53. The genetics and evolution of obligate reproductive parasitism in Trichogramma pretiosum infected with parthenogenesis-inducing Wolbachia. Russell JE; Stouthamer R Heredity (Edinb); 2011 Jan; 106(1):58-67. PubMed ID: 20442735 [TBL] [Abstract][Full Text] [Related]
54. Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Reuter M; Pedersen JS; Keller L Heredity (Edinb); 2005 Mar; 94(3):364-9. PubMed ID: 15674380 [TBL] [Abstract][Full Text] [Related]
55. The genetic basis of male fertility in relation to haplodiploid reproduction in Leptopilina clavipes (Hymenoptera: Figitidae). Pannebakker BA; Beukeboom LW; van Alphen JJ; Brakefield PM; Zwaan BJ Genetics; 2004 Sep; 168(1):341-9. PubMed ID: 15454547 [TBL] [Abstract][Full Text] [Related]