These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19513188)

  • 1. Oxidative cyclization of alkenols with oxone using a miniflow reactor.
    Yamada YM; Torii K; Uozumi Y
    Beilstein J Org Chem; 2009 Apr; 5():18. PubMed ID: 19513188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tightly convoluted polymeric phosphotungstate catalyst: an oxidative cyclization of alkenols and alkenoic acids.
    Yamada YM; Guo H; Uozumi Y
    Org Lett; 2007 Apr; 9(8):1501-4. PubMed ID: 17371036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct lactonization of alkenols via osmium tetroxide-mediated oxidative cleavage.
    Schomaker JM; Travis BR; Borhan B
    Org Lett; 2003 Aug; 5(17):3089-92. PubMed ID: 12916988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient intramolecular hydroalkoxylation of unactivated alkenols mediated by recyclable lanthanide triflate ionic liquids: scope and mechanism.
    Dzudza A; Marks TJ
    Chemistry; 2010 Mar; 16(11):3403-22. PubMed ID: 20146268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative cleavage of olefins by in situ-generated catalytic 3,4,5,6-tetramethyl-2-iodoxybenzoic acid/oxone.
    Moorthy JN; Parida KN
    J Org Chem; 2014 Dec; 79(23):11431-9. PubMed ID: 25353314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoiodite mediated synthesis of isoxazolines from aldoximes and alkenes using catalytic KI and Oxone as the terminal oxidant.
    Yoshimura A; Zhu C; Middleton KR; Todora AD; Kastern BJ; Maskaev AV; Zhdankin VV
    Chem Commun (Camb); 2013 May; 49(42):4800-2. PubMed ID: 23609208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnBr
    Huang K; Li JN; Qiu G; Xie W; Liu JB
    RSC Adv; 2019 Oct; 9(57):33460-33464. PubMed ID: 35529126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Chalcogenylchromenes through Cyclization of Propargylic Aryl Ethers.
    Hellwig PS; Barcellos AM; Cargnelutti R; Barcellos T; Perin G
    J Org Chem; 2022 Nov; 87(22):15050-15060. PubMed ID: 36302502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver- versus gold-catalyzed sequential oxidative cyclization of unprotected 2-alkynylanilines with oxone.
    Arcadi A; Chiarini M; Del Vecchio L; Marinelli F; Michelet V
    Chem Commun (Camb); 2016 Jan; 52(7):1458-61. PubMed ID: 26650111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodine-catalyzed synthesis of five-membered cyclic ethers from 1,3-diols under solvent-free conditions.
    Kasashima Y; Uzawa A; Nishida T; Mino T; Sakamoto M; Fujita T
    J Oleo Sci; 2009; 58(8):421-7. PubMed ID: 19584568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-catalyzed carbonylative cyclization of aryl alkenes/alkenols: a new reaction mode for the synthesis of electron-rich chromanes.
    Li S; Li F; Gong J; Yang Z
    Org Lett; 2015 Mar; 17(5):1240-3. PubMed ID: 25689591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxone-mediated oxidative cleavage of β-keto esters and 1,3-diketones to α-keto esters and 1,2-diketones in aqueous medium.
    Stergiou A; Bariotaki A; Kalaitzakis D; Smonou I
    J Org Chem; 2013 Jul; 78(14):7268-73. PubMed ID: 23782032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2,4,5-trichlorophenoxyacetic acid by a novel Electro-Fe(II)/Oxone process using iron sheet as the sacrificial anode.
    Wang YR; Chu W
    Water Res; 2011 Jul; 45(13):3883-9. PubMed ID: 21550624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-promoted synthesis of 2-organoselanyl-naphthalenes using Oxone
    Perin G; Araujo DR; Nobre PC; Lenardao EJ; Jacob RG; Silva MS; Roehrs JA
    PeerJ; 2018; 6():e4706. PubMed ID: 29761042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of factors on decolorization of azo dye methyl orange by oxone/natural sunlight in aqueous solution.
    Liu Q; Zheng Z; Yang X; Luo X; Zhang J; Zheng B
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):577-84. PubMed ID: 21874342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation.
    Su S; Guo W; Yi C; Leng Y; Ma Z
    Ultrason Sonochem; 2012 May; 19(3):469-74. PubMed ID: 22079807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient activation of oxone by pyrite for the degradation of propanil: Kinetics and degradation pathway.
    Li T; Abdelhaleem A; Chu W; Xu W
    J Hazard Mater; 2021 Feb; 403():123930. PubMed ID: 33264980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular Reaction of (gamma-Alkoxyallyl)stannane with Aldehyde: Origin of the Stereoselectivities.
    Kadota I; Kawada M; Gevorgyan V; Yamamoto Y
    J Org Chem; 1997 Oct; 62(21):7439-7446. PubMed ID: 11671862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts.
    Antonkin NS; Vlasenko YA; Yoshimura A; Smirnov VI; Borodina TN; Zhdankin VV; Yusubov MS; Shafir A; Postnikov PS
    J Org Chem; 2021 May; 86(10):7163-7178. PubMed ID: 33944564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of free radicals by the Co
    Rodríguez-Narváez OM; Serrano-Torres O; Wrobel K; Brillas E; Peralta-Hernandez JM
    Water Sci Technol; 2018 Dec; 78(10):2131-2140. PubMed ID: 30629541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.