BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19513250)

  • 1. Small interfering peptides as a novel way of transcriptional control.
    Yun J; Kim SG; Hong S; Park CM
    Plant Signal Behav; 2008 Sep; 3(9):615-7. PubMed ID: 19513250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals.
    Seo PJ; Park CM
    Plant Signal Behav; 2010 May; 5(5):481-3. PubMed ID: 20139739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive inhibition of transcription factors by small interfering peptides.
    Seo PJ; Hong SY; Kim SG; Park CM
    Trends Plant Sci; 2011 Oct; 16(10):541-9. PubMed ID: 21723179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development.
    Kim YS; Kim SG; Lee M; Lee I; Park HY; Seo PJ; Jung JH; Kwon EJ; Suh SW; Paek KH; Park CM
    Plant Cell; 2008 Apr; 20(4):920-33. PubMed ID: 18408069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development.
    Turchi L; Baima S; Morelli G; Ruberti I
    J Exp Bot; 2015 Aug; 66(16):5043-53. PubMed ID: 25911742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential in vitro and ex vivo targeting of bZIP53 involved in stress response and seed maturation in Arabidopsis thaliana by five designed peptide inhibitors.
    Jain P; Shah K; Rishi V
    Biochim Biophys Acta Proteins Proteom; 2018 Dec; 1866(12):1249-1259. PubMed ID: 30278286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis.
    Mateos JL; Madrigal P; Tsuda K; Rawat V; Richter R; Romera-Branchat M; Fornara F; Schneeberger K; Krajewski P; Coupland G
    Genome Biol; 2015 Feb; 16(1):31. PubMed ID: 25853185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-DNA-binding activity for the ATHB4 transcription factor in the control of vegetation proximity.
    Gallemí M; Molina-Contreras MJ; Paulišić S; Salla-Martret M; Sorin C; Godoy M; Franco-Zorrilla JM; Solano R; Martínez-García JF
    New Phytol; 2017 Nov; 216(3):798-813. PubMed ID: 28805249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.
    Kagale S; Links MG; Rozwadowski K
    Plant Physiol; 2010 Mar; 152(3):1109-34. PubMed ID: 20097792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.
    Müller CJ; Valdés AE; Wang G; Ramachandran P; Beste L; Uddenberg D; Carlsbecker A
    Plant Physiol; 2016 Feb; 170(2):956-70. PubMed ID: 26637548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis.
    Jeong EY; Seo PJ; Woo JC; Park CM
    BMC Plant Biol; 2015 May; 15():110. PubMed ID: 25929516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize.
    Depège-Fargeix N; Javelle M; Chambrier P; Frangne N; Gerentes D; Perez P; Rogowsky PM; Vernoud V
    J Exp Bot; 2011 Jan; 62(1):293-305. PubMed ID: 20819789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli.
    Harris JC; Hrmova M; Lopato S; Langridge P
    New Phytol; 2011 Jun; 190(4):823-837. PubMed ID: 21517872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering B-ZIP transcription factor interactions in vitro and in vivo.
    Vinson C; Acharya A; Taparowsky EJ
    Biochim Biophys Acta; 2006; 1759(1-2):4-12. PubMed ID: 16580748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant transcription factors from the homeodomain-leucine zipper family I. Role in development and stress responses.
    Perotti MF; Ribone PA; Chan RL
    IUBMB Life; 2017 May; 69(5):280-289. PubMed ID: 28337836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Jin J; He K; Tang X; Li Z; Lv L; Zhao Y; Luo J; Gao G
    Mol Biol Evol; 2015 Jul; 32(7):1767-73. PubMed ID: 25750178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice.
    Meijer AH; Scarpella E; van Dijk EL; Qin L; Taal AJ; Rueb S; Harrington SE; McCouch SR; Schilperoort RA; Hoge JH
    Plant J; 1997 Feb; 11(2):263-76. PubMed ID: 9076993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of transcription factors that regulate
    Wang P; Nolan TM; Yin Y; Bassham DC
    Autophagy; 2020 Jan; 16(1):123-139. PubMed ID: 30909785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function.
    Turchi L; Carabelli M; Ruzza V; Possenti M; Sassi M; Peñalosa A; Sessa G; Salvi S; Forte V; Morelli G; Ruberti I
    Development; 2013 May; 140(10):2118-29. PubMed ID: 23578926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary and Functional Analysis of Membrane-Bound NAC Transcription Factor Genes in Soybean.
    Li S; Wang N; Ji D; Xue Z; Yu Y; Jiang Y; Liu J; Liu Z; Xiang F
    Plant Physiol; 2016 Nov; 172(3):1804-1820. PubMed ID: 27670816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.