BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 19513635)

  • 21. Local delivery of cytokines by retrovirally transduced antigen-specific TCR+ hybridoma cells in experimental autoimmune encephalomyelitis.
    Dal Canto RA; Costa G; Shaw MD; Seroogy C; Nolan GP; Fathman CG
    Eur Cytokine Netw; 1998 Sep; 9(3 Suppl):83-91. PubMed ID: 9831193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis.
    Martin R; McFarland HF
    Crit Rev Clin Lab Sci; 1995; 32(2):121-82. PubMed ID: 7598789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system.
    Prinz M; Schmidt H; Mildner A; Knobeloch KP; Hanisch UK; Raasch J; Merkler D; Detje C; Gutcher I; Mages J; Lang R; Martin R; Gold R; Becher B; Brück W; Kalinke U
    Immunity; 2008 May; 28(5):675-86. PubMed ID: 18424188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple sclerosis: a complicated picture of autoimmunity.
    McFarland HF; Martin R
    Nat Immunol; 2007 Sep; 8(9):913-9. PubMed ID: 17712344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The immunology of multiple sclerosis: disease mechanisms and therapeutic targets.
    Holmøy T
    Minerva Med; 2008 Apr; 99(2):119-40. PubMed ID: 18431322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE).
    Ziemssen T; Ziemssen F
    Autoimmun Rev; 2005 Sep; 4(7):460-7. PubMed ID: 16137612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oral tolerance reduces Th17 cells as well as the overall inflammation in the central nervous system of EAE mice.
    Peron JP; Yang K; Chen ML; Brandao WN; Basso AS; Commodaro AG; Weiner HL; Rizzo LV
    J Neuroimmunol; 2010 Oct; 227(1-2):10-7. PubMed ID: 20580440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis.
    Jadidi-Niaragh F; Mirshafiey A
    Immunopharmacol Immunotoxicol; 2011 Sep; 33(3):545-67. PubMed ID: 21284556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TLR7 signaling exacerbates CNS autoimmunity through downregulation of Foxp3+ Treg cells.
    Lalive PH; Benkhoucha M; Tran NL; Kreutzfeldt M; Merkler D; Santiago-Raber ML
    Eur J Immunol; 2014 Jan; 44(1):46-57. PubMed ID: 24018482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental autoimmune encephalomyelitis--achievements and prospective advances.
    Batoulis H; Recks MS; Addicks K; Kuerten S
    APMIS; 2011 Dec; 119(12):819-30. PubMed ID: 22085358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The immune pathogenesis of experimental autoimmune encephalomyelitis: lessons learned for multiple sclerosis?
    Kuerten S; Lehmann PV
    J Interferon Cytokine Res; 2011 Dec; 31(12):907-16. PubMed ID: 21936633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytokines and effector T cell subsets causing autoimmune CNS disease.
    Petermann F; Korn T
    FEBS Lett; 2011 Dec; 585(23):3747-57. PubMed ID: 21477588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deleterious versus protective autoimmunity in multiple sclerosis.
    Kostic M; Stojanovic I; Marjanovic G; Zivkovic N; Cvetanovic A
    Cell Immunol; 2015 Aug; 296(2):122-32. PubMed ID: 25944389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The significance of a B cell-dependent immunopathology in multiple sclerosis].
    Kuerten S; Pauly R; Blaschke S; Rottlaender A; Kaiser CC; Schroeter M; Fink GR; Addicks K
    Fortschr Neurol Psychiatr; 2011 Feb; 79(2):83-91. PubMed ID: 21253995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New lessons about old molecules: how type I interferons shape Th1/Th17-mediated autoimmunity in the CNS.
    Prinz M; Kalinke U
    Trends Mol Med; 2010 Aug; 16(8):379-86. PubMed ID: 20591737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications.
    Mastorodemos V; Ioannou M; Verginis P
    Neuroimmunomodulation; 2015; 22(3):181-95. PubMed ID: 24852748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic benefits of regulating inflammation in autoimmunity.
    Nikoopour E; Schwartz JA; Singh B
    Inflamm Allergy Drug Targets; 2008 Sep; 7(3):203-10. PubMed ID: 18782028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Role of T-regulatory cells in multiple sclerosis].
    Rojas JI; González SJ; Patrucco L; Cristiano E
    Medicina (B Aires); 2010; 70(1):79-86. PubMed ID: 20228030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thymic peptides restrain the inflammatory response in mice with experimental autoimmune encephalomyelitis.
    Lunin SM; Glushkova OV; Khrenov MO; Novoselova TV; Parfenyuk SB; Fesenko EE; Novoselova EG
    Immunobiology; 2013 Mar; 218(3):402-7. PubMed ID: 22727332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interleukin-17A and interleukin-17F mRNA expression in peripheral blood mononuclear cells of patients with multiple sclerosis.
    Babaloo Z; Babaie F; Farhoodi M; Aliparasti MR; Baradaran B; Almasi S; Hoseini A
    Iran J Immunol; 2010 Dec; 7(4):202-9. PubMed ID: 21189442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.