BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19513758)

  • 1. Pooling control in variable preparative chromatography processes.
    Westerberg K; Degerman M; Nilsson B
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):375-82. PubMed ID: 19513758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal.
    Xie S; Xiang B; Deng H; Xiang S; Lu J
    Anal Chim Acta; 2007 Feb; 585(1):60-5. PubMed ID: 17386647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic interaction chromatography of proteins IV. Kinetics of protein spreading.
    Haimer E; Tscheliessnig A; Hahn R; Jungbauer A
    J Chromatogr A; 2007 Jan; 1139(1):84-94. PubMed ID: 17116304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying process tradeoffs in the operation of chromatographic sequences.
    Ngiam SH; Bracewell DG; Zhou Y; Titchener-Hooker NJ
    Biotechnol Prog; 2003; 19(4):1315-22. PubMed ID: 12892496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation.
    Zhang L; Lu D; Liu Z
    J Chromatogr A; 2009 Mar; 1216(12):2483-90. PubMed ID: 19178912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the sample-solvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography.
    Muca R; Marek W; Piatkowski W; Antos D
    J Chromatogr A; 2010 Apr; 1217(17):2812-20. PubMed ID: 20236645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Case study and application of process analytical technology (PAT) towards bioprocessing: use of on-line high-performance liquid chromatography (HPLC) for making real-time pooling decisions for process chromatography.
    Rathore AS; Yu M; Yeboah S; Sharma A
    Biotechnol Bioeng; 2008 Jun; 100(2):306-16. PubMed ID: 18078292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Case study and application of process analytical technology (PAT) towards bioprocessing: Use of tryptophan fluorescence as at-line tool for making pooling decisions for process chromatography.
    Rathore AS; Li X; Bartkowski W; Sharma A; Lu Y
    Biotechnol Prog; 2009; 25(5):1433-9. PubMed ID: 19725111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining process design space for a hydrophobic interaction chromatography (HIC) purification step: application of quality by design (QbD) principles.
    Jiang C; Flansburg L; Ghose S; Jorjorian P; Shukla AA
    Biotechnol Bioeng; 2010 Dec; 107(6):985-97. PubMed ID: 20683852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and optimization of preparative reversed-phase liquid chromatography for insulin purification.
    Degerman M; Jakobsson N; Nilsson B
    J Chromatogr A; 2007 Aug; 1162(1):41-9. PubMed ID: 17376466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale demonstration of a process analytical technology application in bioprocessing: use of on-line high performance liquid chromatography for making real time pooling decisions for process chromatography.
    Rathore AS; Parr L; Dermawan S; Lawson K; Lu Y
    Biotechnol Prog; 2010; 26(2):448-57. PubMed ID: 19927320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography.
    Zhao G; Peng G; Li F; Shi Q; Sun Y
    J Chromatogr A; 2008 Nov; 1211(1-2):90-8. PubMed ID: 18947830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of protein monomer/aggregate purification and separation using hydrophobic interaction chromatography.
    McCue JT; Engel P; Ng A; Macniven R; Thömmes J
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):261-75. PubMed ID: 18205016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of at-line spectrophotometry for the rapid definition of pilot-scale flocculation processes.
    Bou-Habib G; Yeung K; Titchener-Hooker NJ; Hoare M
    Biotechnol Prog; 2002; 18(2):387-93. PubMed ID: 11934311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of preparative reversed-phase HPLC of insulin.
    Liu X; Kaczmarski K; Cavazzini A; Szabelski P; Zhou D; Guiochon G
    Biotechnol Prog; 2002; 18(4):796-806. PubMed ID: 12153314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in inline quantification of co-eluting proteins in chromatography: Process-data-based model calibration and application towards real-life separation issues.
    Brestrich N; Sanden A; Kraft A; McCann K; Bertolini J; Hubbuch J
    Biotechnol Bioeng; 2015 Jul; 112(7):1406-16. PubMed ID: 25683378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The direct inverse method: a novel approach to estimate adsorption isotherm parameters.
    Cornel J; Tarafder A; Katsuo S; Mazzotti M
    J Chromatogr A; 2010 Mar; 1217(12):1934-41. PubMed ID: 20149376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility study for the fractionation of the major human immunoglobulin G subclasses using hydrophobic interaction membrane chromatography.
    Wang L; Ghosh R
    Anal Chem; 2010 Jan; 82(1):452-5. PubMed ID: 20000416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model based robustness analysis of an ion-exchange chromatography step.
    Jakobsson N; Degerman M; Stenborg E; Nilsson B
    J Chromatogr A; 2007 Jan; 1138(1-2):109-19. PubMed ID: 17126348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization.
    Tarafder A; Aumann L; Müller-Späth T; Morbidelli M
    J Chromatogr A; 2007 Oct; 1167(1):42-53. PubMed ID: 17765250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.